

September 16-19, 2022 Shenzhen, China

Effect of support settlement on ultimate bearing capacity of Zhoukoudian steel structure

Yan Li¹, Bing Zheng², Tongyu Ding², Wenxin Qu², Jinsan Ju² and Yushuo Zhang^{2,*} ¹ Heritage Office of Administrative Office of Peking Man Site at zhoukoudian, Beijing, China ² Dept. of Civil Engineering, China Agricultural University, Beijing, China *Corresponding author email: zhang_yu_shuo@163.com

Based on the project of first site (Ape Man cave) protective building in Zhoukoudian Ruins, consistent mode imperfection method and advanced consistent mode imperfection method are adopted to study the effect of non-uniform support settlement on the ultimate bearing capacity of the single-layer lattice shell structure by considering two kinds of global stability analysis: geometric nonlinear analysis (GNA) and double nonlinear analysis (i.e., geometric and material nonlinear analysis, GMNA).

Figure 3. Diagram of changes in elastic global stability ultimate bearing capacity of lattice shells with each mode imperfection.

Figure 4. Diagram of changes in elastoplastic global stability ultimate bearing capacity of lattice shells with each mode imperfection.

Table 2. Mode imperfection combination coefficient.

Mode imperfection combination	1st mode imperfection	2nd mode imperfection	3rd mode imperfection	4th mode imperfection
C1	0.04	0.02	0.02	0.02
C2	0.02	0.04	0.02	0.02
C3	0.04	0.02	0.04	0.02
C4	0.04	0.02	0.02	0.04
C5	0.025	0.025	0.025	0.025

− ★ − Perfect structure →

Figure 1. Finite element model of Zhoukoudian single-layer lattice shell.

Table 1. Support settlement cases.								
Settlement case	SC1	SC2	SC3	SC4	SC5			
L1 settlement/mm	-23.603	-59.008	-118.015	-177.023	-236.030			
L6 settlement/mm	13.528	33.820	67.640	101.460	135.280			
L10 settlement/mm	-33.288	-83.220	-166.440	-249.660	-332.880			
U3 settlement/mm	-37.430	-93.575	-187.150	-280.725	-374.300			
U8 settlement/mm	-2.678	-6.695	-13.390	-20.085	-26.780			

Figure 5. Diagram of changes in elastic global stability ultimate bearing capacity of lattice shells with combined mode imperfections.

Figure 6. Diagram of changes in elastoplastic global stability ultimate bearing capacity of lattice shells with combined mode imperfections.

Conclusions

- Without considering material nonlinearity, the effect of non-uniform support settlement on the elastic ultimate bearing capacity of Zhoukoudian single-layer lattice shell is within 1%. Nonuniform settlement is beneficial to increase the elastic global stability ultimate bearing capacity of the perfect structure by a small margin, but excessive settlement may exert adverse effects on the bearing capacity of the structures with initial imperfections. The elastic global stability of the structure can be ensured by keeping the level **below 5-fold settlement**.
- When considering material nonlinearity, within 2.5-fold settlement, non-uniform support settlement is conducive to a slight increase in the elastoplastic global stability ultimate bearing capacity of the structure. After SC2, non-uniform support settlement has an adverse effect on the bearing capacity of the lattice shell with a decrease by $(0.508 \pm 0.09)\%$ under 10-fold settlement compared with that with no settlement. The elastoplastic global stability of the structure can be ensured by keeping the level **below 2.5-fold settlement**.
- Non-uniform support settlement will affect the value of elastic and elastoplastic global stability ultimate bearing capacity of the structure, but will not affect the instability path.