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Wearable electrocardiogram (ECG) devices can provide real-time, long-term, non-invasive and comfortable ECG

monitoring for premature beats (PB) assessment (typically presenting as premature ventricular contractions

(PVC) and supraventricular premature beat (SPB)), which may foreshadow stroke or sudden cardiac death.

However, the poor quality, introduced by the dry electrode in wearable ECG monitoring system, leads to the

inefficient recognition of the existing PB detection technologies. Although many methods can achieve high recog-

nition rate on current widely-used open-access clinical ECG databases, they still fail to work properly on dynamic

ECG signals. This study presents an open-access ECG database comprises of 24-hour wearable ECG record-

ings. The database is used for the 3rd China Physiological Signal Challenge (CPSC 2020), where participants

are expected to recognize PVC and SPB from these recordings. All the approved algorithms are evaluated by

scoring standards and regulations defined in terms of PVC detection and SPB detection, respectively.

Keywords: Electrocardiogram (ECG), Premature Ventricular Contractions (PVC), Supraventricular
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1. INTRODUCTION
Electrocardiogram (ECG) is widely used by cardiologists as a

standard tool for non-invasively monitoring and clinical diag-

nosis of cardiovascular disease. Arrhythmias are deadly heart

diseases that cause more than 7 million deaths each year [1].

Premature beats (PBs), including supraventricular premature beat

(SPB) or premature ventricular contractions (PVC), are the most

common arrhythmias, manifested by alteration in RR interval

duration and/or the QRS waveform, and the increased prevalence

of these beats may be a precursor to stroke or sudden cardiac

death [2]. Due to the randomness and uncertainty in the occur-

rence of PBs, the diagnosis of PBs needs observation of dynamic

ECG during a long period [3]. Thanks to advances in wear-

able technology and the rising popularity of mobile healthcare,

several remote, continuous and wearable ECG monitoring sys-

tems have been proposed to achieve comfortable, non-invasive

ambulatory ECG signals in daily life [4]. The increase volume

of ECG data has driven the need for automatic PB detection
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algorithms that can be used for early diagnosis and prevention

of heart disease and reduce the manual interpretation work for

physicians.

Although numerous ECG heart beat detection and classifica-

tion algorithms have been developed based on different tech-

niques, including ECG morphology and heartbeat interval [5, 6],

principal component analysis (PCA) methods [7], redundant dis-

crete wavelet transform (RDWT) [8] for feature extraction and

convolutional neural network (CNN) [9], self-constructing neural

fuzzy inference network (SoNFIN) [10], learning vector quanti-

zation (LVQ) neural network [11] and support vector machines

(SVM) [12] for heartbeat classification. It is reported that the

combination of these algorithms can achieve satisfactory perfor-

mance in terms of classification accuracy. However, these algo-

rithms are based on clinical ECG signals (such as MIT-BIH

Arrhythmia Database or AHA Database [13, 14]), which are sta-

tionary without severe noises or artifact. It is still challenging

to realize accurate classification in dynamic signals with severe

noise and artifacts, especially for PB recognition in wearable

ECG signals [11].
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To improve the PB detection algorithms in dynamic ECG

signals, the open-access databases play an important role.

Although well-thought-out databases, such as the developed ECG

database [15], heart sound database [16], electroencephalogram

(EEG) database [17], 1st and 2nd CPSC [18, 19], etc., have

been developed, there still lacks specialized dynamic database

for testing PB detection algorithms. Thus, a well-designed wear-

able ECG database can adequately test the performance of PB

detection algorithms is highly needed. This study provides a new

ECG database containing long-term wearable ECG recordings

from clinical arrhythmia patterns, to encourage the participants to

develop more efficient and robust algorithms for PVC and SPB

detection, like a game of ‘Gold Rush.’

2. CHALLENGE DATA
Training data consists of 10 single-lead ECG recordings collected

from patients with cardiovascular disease, each of the recording

last for about 24 hours (shown in Table I). Test set contains

similar ECG recordings of same lengths, which is unavailable to

public and will remain private for the purpose of scoring for the

duration of the Challenge and for some period afterwards. All

data were collected by a unified wearable ECG device with a

sampling frequency of 400 Hz, and provided in MATLAB format

(each including two *.mat file: one is ECG data and another one

is the corresponding SPB and PVC annotation file).

All the 24-hour wearable ECG recordings are challenging

for PB detection. In general, there are two signal types of the

challenging ECG recordings. We summarize the signal types as

follows.

2.1. Type A: Pathological Arrhythmias

Usually, SPBs possess a normal QRS complex with irregular RR

intervals, while PVCs present bizarre QRS complex with irreg-

ular RR intervals [20]. Similar to SPB, AF is characterized by

normal QRS complex with irregular RR intervals and fibrillatory

waves [21]. Then, traditional rule-based algorithms exhibit poor

performance when distinguish SPB from AF [22]. In addition, the

24-hour wearable ECG recordings come from different channels,

which indicates that the polarity of the PVC may be consistent

with normal beats in some recordings and opposite to normal

beats in other recordings. It is also worthy to note that the PBs

occur in repeating patterns (bigeminy, trigeminy, quadrigeminy,

Table I. The detailed information of training data.

AF Length # N # S # V # Total

Recordings (Y /N)∗ (h) beats beats beats beats

A01 N 25.89 109062 24 0 109086

A02 Y 22.83 98936 0 4554 103490

A03 Y 24.70 137249 0 382 137631

A04 N 24.51 77812 3466 19024 100302

A05 N 23.57 94614 25 1 94640

A06 N 24.59 77621 6 0 77627

A07 N 23.11 73325 3481 15150 91956

A08 Y 25.46 115518 0 2793 118311

A09 N 25.84 88229 1462 2 89693

A10 N 23.64 72821 9071 169 82061

Notes: ∗Y represents the current recording contains atrial fibrillation (AF) signals; N repre-

sents the current recording does not contain AF signal; S represents for supraventricular

premature beat; V represents for premature ventricular contractions.

-1

-0.5

0

0.5

1

A
m

p
li

tu
d
e 

(m
V

)

B: A05, 31m16s-31m46s

-2

-1

0

1

2

A
m

p
li

tu
d
e 

(m
V

)

A: A01, 4h26m28s-4h26m58s

0 3 6 9 12 15 18 21 24 27 30

Time (s)

-0.4

-0.2

0

0.2

A
m

p
li

tu
d
e 

(m
V

)

C: A07, 15h38m56s-15h39m26s

Premature Ventricular Contraction Normal Beat

Fig. 1. Examples of ECG waveforms with different pathological arrhyth-

mias. Red circles denote the reference location of PVC and black ones

denote the reference location of normal beats. From top to bottom: (A) Multi-

source PVCs; (B) PVC in AF and (C) ventricular trigeminy.

couplet, etc.) in some recordings and there also exist multi-source

PVCs in some recordings (see Fig. 1).

2.2. Type B: Poor Signal Quality Due to

Artifact and Noise

Due to the poor contact and high skin-electrode impedance

between dry electrodes and skin, wearable ECG signals col-

lected by dry electrodes are easily contaminated by artifacts and

noises [23, 24]. Unfortunately, whether using time-domain or

frequency-domain denoising methods, these noises are difficult

to remove. The reason is that their frequency content is over-

lapped with the frequency band of signal interest and they have

similar morphologies to QRS complex [25]. The typical artifacts

and noises (Fig. 2) are from:

(1) Electrode contact noise: Loss of contact between the elec-

trode and skin manifesting as sharp changes with saturation on

the ECGs (usually due to an electrode being nearly or completely

pulled off).

(2) Electrode movement artifacts: Electrode movement away

from the contact area on the skin, leading to variations in the

impedance between the electrode and skin, which will cause

potential variations in the ECG and usually manifest themselves

as rapid (but continuous) baseline jumps or complete saturation.

(3) Device noise: Noises generated by the hardware of the

device.

It is worthy to note that wearable ECG is often contaminated

by noise in similar morphologies caused the interest signal nearly

invisible by human eyes. To remove all noises completely is

impossible, so it is important to quantify the nature of noises and

choose an appropriate algorithm to evaluate the signal quality.
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Fig. 2. Examples of poor signal quality ECG episodes. Pink circles denote

the reference location of SPB and black ones denote the reference location

of normal beats. The challenges for accurate PVC and SPB detection are

from: (A) Device noise and electrode contact noise; (B) baseline wander

noise and electrode movement artifacts interference and C) electrode contact

noise and electrode sliding interference.

2.3. Annotation

The annotation process for all raw data consisted of four steps:

signal quality detection, QRS complex location, QRS type deter-

mination, and manual review. Firstly, all raw ECG recordings

Table II. Summary of the major databases used for ECG signal analysis.

# ECG Sampling # QRS

Database # Recordings Time channels frequency (Hz) types Other Information

American heart association

ventricular arrhythmia

databasea

80 35-min/3-h 2 250 8 Beat-by-beat annotations

European ST-T databasea 90 2-h 2 250 – Beat-by-beat annotations

Fantasia databasea 40 120-min 3 250 – Beat-by-beat annotations

INCARTa 75 30-min 12 275 10 Beat-by-beat annotations

Long-term-STa 86 21∼24 h 2/3 250 – Beat-by-beat annotations

MGH/MF waveform database 250 Varying lengths 3 360 – Beat-by-beat annotations

MIT-BIH arrhythmia a 48 30-min 2 360 15 Beat-by-beat annotations

MIT ST change databasea 28 Varying lengths 2 360 – Beat-by-beat annotations

Noise stress test databasea 15 30-min 2 360 – Beat-by-beat annotations

PTBa 268 Varying lengths 14 1000 9 Beat-by-beat annotations

QT databasea 105 15-min 2 250 – Beat-by-beat annotations

Supraventricular arrhythmia

databasea
78 30-min 2 128 – Beat-by-beat annotations

T-wave alternans databasea 100 2-min 12/2/3 500 – Beat-by-beat annotations

UCI machine learning:

Arrhythmia dataset

452 24-h 12 – 16 Diagnostic labeling

1st CPSC 6877 Varying lengths 12 500 9 Diagnostic labeling

2st CPSC 2000 10-s 12 500 – Beat-by-beat annotations

Notes: aFrom PhysioBank datasets [15] available at https://physionet.org/. # represents for the number of specific item.

were quickly scanned and the poor quality episodes (where the

QRS complex could not be recognized by visual inspection)

were labeled. Then, the ECG recordings, except for poor qual-

ity episodes, were beat-by-beat annotated first by the P&T QRS

detector [26] and then manually hand-corrected to the peak of

each QRS complex by visual inspection. Subsequently, each

heartbeat marked with QRS complex position was determined

to different beat type, and the positions of PVC and SPB were

marked manually. Subsequently, manual review was performed

by a single individual to correct any obvious mistake.

3. EVALUATION METHOD
CPSC 2020 is comprised of two events related to scoring: PVC

detection and SPB detection. Only test set will be used for the

event scoring. PVC and SPB annotations in the training and

test sets are labeled and initially confirmed by cardiologists and

trained volunteers. Score is calculated according to the following

rules.

3.1. Event 1: PVC Detection

In this event, the goal is to generate a set of PVC annotations for

each recording that can match the reference PVC annotations.

For each reference PVC annotation, a matched PVC annotation

should lie in 150 ms duration centered by the reference PVC

annotation [27]. Noted that the reference PVC annotations appear

in the first and last 0.2 seconds are ignored. Detected PVC should

be within 150 ms from the reference ones. The scoring rules are:
• a false positive (FP) detection deduct 1 point.

• a false negative (FN) detection deduct 5 points, since from a

clinical perspective, missed diagnosis is more serious than mis-

diagnosis, thus we penalize FN detection.

The final score for Event 1 (PVCerr) is the sum of all deducted

points.

3.2. Event 2: SPB Detection

In this event, the goal is to generate a set of SPB annotations

for each recording that can match the reference SPB annotations.

2665



R ES E A R CH A R T I C L E J. Med. Imaging Health Inf. 10, 2663–2667, 2020

For each reference SPB annotation, a matched SPB annotation

should lie in 150 ms duration centered by the reference SPB

annotation [27]. Noted that the reference SPB annotations appear

in the first and last 0.2 seconds are also ignored. Detected SPB

should be within 150 ms from the reference ones. The scoring

rules are:
• a false positive (FP) detection deduct 1 point.
• a false negative (FN) detection deduct 5 points, since from a

clinical perspective, missed diagnosis is more serious than mis-

diagnosis, thus we penalize FN detection.

The final score for Event 2 (SPBerr) is the sum of all deducted

points.

4. DISCUSSION
In this paper, a brand-new database is proposed to facilitate the

development of algorithms for searching PVC and SPB from

24-hour wearable single-lead ECG recordings. To data, there

existed several well-annotated and validated ECG databases (see

Table II) [15, 28–30] that can be used for the evaluation of PVC

and SPB detection algorithms and test on these well-annotated

and validated databases provide reproducible and comparable

results. In addition, the scoring performances of some methods

on these databases are too high due to the relatively good signal

quality of ECG waveforms in these databases. However, the per-

formances of these PVC and SPB detection algorithms are not

tested on the strict setting even for rigorous conditions, such as

wearable signals. We emphasize this by developing a new wear-

able ECG database for challenging PVC and SPB detection tasks,

and by proposing new evaluation rules for algorithmic testing in

the developed challenging ECG databases. CPSC 2020 contains

10 challenging 24-hour ECG recordings with manually anno-

tated QRS types. This database includes signals from both patho-

logical rhythm and artifacts, and is a real-world collected ECG

database from the wearable device. We hope this strictly man-

ual annotated database can benefit the study for dynamic ECG

processing.
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