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Abstract: The recruitment-to-inflation (R/I) ratio is a 

simple bedside method to evaluate the potential for lung 

recruitment. We developed a method that to calculate the 

regional R/I ratios of the whole lung by EIT. We found that 

regional R/I ratios provided regional information to predict 

the potential effect of RM on lung regional respiratory 

mechanics. We included 30 patients with acute hypoxemic 

respiratory failure, and we found that Regional R/I ratios 

provided regional information to predict the potential effect 

of RM on lung regional respiratory mechanics. 

1 Introduction 

The recruitment-to-inflation (R/I) ratio is a simple bedside 

method to evaluate the potential for lung recruitment (PLR) 

and identify patients who could benefit from high positive 

end-expiratory pressure (PEEP). Using electrical 

impedance tomography (EIT), we developed a method to 

calculate the regional R/I ratios of the whole lung, non-

dependent (ventral) and dependent (dorsal) lung. The aim 

of this study was to assess the ability of regional R/I ratios 

on predicting PEEP-induced changes in collapssion and 

overdistention, estimated by regional compliances. 

2 Methods 

This was an observational study. EIT recordings were taken 

during a recruitment maneuver (RM), with PEEP levels 

ranging from 5 to 15 (cmH2O). We calculated the R/I ratio 

for the whole lung (R/I GLOBAL), as well as for the dorsal 

(R/I D) and ventral (R/I V) regions. A high potential for 

lung recruitability (PLR) was defined as an R/I ratio above 

the median value for the study population. Additionally, we 

measured the regional change in compliance (ΔCrs) 

resulting from the RM. A higher R/I ratio signifies greater 

lung compliance, indicating a larger volume of lung 

recruited relative to the volume of overdistension. 

Conversely, a lower R/I ratio suggests a higher risk of 

overdistention without effective recruitment upon PEEP 

increase.A high potential lung recruitability (PLR) was 

defined as an R/I ratio exceeding the median for the 

population. 

3 Results 

The study included 30 patients with acute hypoxemic 

respiratory failure, with a mean PaO2/FiO2 ratio of 182 ± 

75 and a mean respiratory system compliance of 21±4 

mL/cmH2O. The median R/I GLOBAL was 1.51 [1.11-

1.75]. The R/I for the dorsal region (R/I D) was 

significantly higher than that for the ventral region (R/I V) 

(median R/I ratio of 0.98 [0.78–1.25] vs. 0.62 [0.42–0.83], 

p<0.001). The value of median R/I D to median R/I 

GLOBAL was 0.64, and the value of median R/I V to 

median R/I GLOBAL was 0.41. A higher R/I D correlated 

with a greater decrease in dorsal lung compliance (Crs) (r=-

0.712, p=0.015) due to alveolar collapse at low PEEP levels. 

Patients with a high regional (dorsal lung) PLR exhibited a 

lower ΔCrs in the dorsal lung compared to those with a low 

regional (dorsal lung) PLR (p<0.001). 

4 Conclusion 

Regional R/I ratios provided regional information to predict 

the potential effect of RM on lung regional respiratory 

mechanics. 
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Abstract: Data-driven reconstruction techniques using
deep neural network (DNN) architectures are applied more
frequently in the field of electrical impedance tomography
(EIT). The solution of the underlying ill-posed inverse prob-
lem may benefit from the possibilities of machine learning
(ML). This contribution demonstrates, how knowledge on
recurring sequences of EIT measurements (e.g. breathing
cycles) may be used to improve the reconstruction. A com-
bination of a Long Short-Term Memory (LSTM) and an
Variational Autoencoder (VAE) is used.

1 Introduction
EIT is an established clinical procedure for monitoring the
pulmonary system of intensive care patients. Especially in
clinical applications, the reliability of imaging is important.
One potential approach for enhancement involves the train-
ing of a recurrent network to learn the breathing cycle. Our
approach could contribute to a more precise recognition of
deviations from the established cycle.

2 Methods
To reconstruct the conductivity distribution γ from the volt-
age data V, the inverse EIT problem is solved by a combi-
nation of a VAE and a mapper, which can be described as
the mapping Γ : V 7→ γ [1].

2.1 Data Acquisition

For our in-silico study data was simulated using the pyEIT
[2] Python package. Therefore, a thorax finite element
mesh (FEM) with 16 electrodes was created. The sim-
ulation model does not include the electrode-skin contact
impedance. The empty area has a conductivity value of 1.
For representing the lungs two circles were placed inside
this area with a conductivity of 10. By increasing and de-
creasing the size of the circles, inhalation, and exhalation
are approximated, see figure 1.
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Figure 1: Excerpts from the simulated data set.

A breathing period Tt consists of N = 100 (0 ≤ t ≤
N − 1) frames. For each sample, normal distributed noise
was added to all mesh elements γ ∈ R1912 for better gen-
eralization during the training. The generated voltage time
series data set consists of 100 periods, i.e. 10 000 samples.
For the model training, L = 8000, and for testing 2 000 of
the samples were used.

2.2 Reconstruction Model

The VAE is a generative probabilistic model that consists of
an encoder Φ and a decoder Ψ. Between these components,
a compact representation of the conductivity distribution γ,
called latent space z ∈ R8, is learned. The mapper Ξ links
the voltage data to the lower dimensional latent represen-

tation during supervised learning. The final reconstruction
model architecture is described in equation (1).

Γ := Ξ ◦Ψ : V 7→ z 7→ γ (1)

A mapper a) is trained with a single voltage vector V =
{vt} and maps it to the latent space zt at time (0 ≤ t ≤
L − 1). The mapper b) and mapper c) are trained with the
current and a sequence of l = 3 past voltage data samples
V = {vt−3, vt−2, vt−1, vt} at time (l ≤ t ≤ L − 1). Map-
per c) has the same architecture as mapper b), but with an
LSTM layer before the output. An LSTM network is de-
signed to capture and learn patterns in sequential data. So
the LSTM module is responsible for estimating the correla-
tion in the temporal series of features inferred from the VAE
[3].

3 Result
Figure 2 evaluates the three mapper architectures based
on the deviation between the ground truth and the recon-
structed conductivity distribution from equation (1). The
deviation is computed by counting the difference of FEM
elements representing the lungth and the empty ground. It
can be seen that with prior knowledge of past measure-
ments, more precise reconstruction is possible.

a) 1D Mapper b) 2D Mapper c) LSTM Mapper
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Figure 2: Performance comparison of the three mappers for un-
seen samples.

4 Conclusions
The presented results agree with the assumption, that the in-
corporation of memory into a DNN for absolute EIT imag-
ing improves the reliability. The full code is available on
GitHub [4].
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Abstract: To solve the ill-posed inverse problem in the 

electrical impedance tomography (EIT), a new image 

reconstruction method based on an improved dense full 

convolutional neural network (Y-DCNN) is proposed. 

Simulation results show that cerebral haemorrhage can be 

accurately reconstructed by the proposed method.  

1 Introduction 

As a functional imaging technique, electrical impedance 

tomography (EIT) is able to reconstruct conductivity 

distribution change in human tissues when there is 

pathological variation. Comparing with other tomography 

techniques such as computed tomography (CT) and 

magnetic resonance imaging (MRI), EIT has the 

advantages of non-invasiveness, low-cost and radiation-

free. Therefore, EIT shows its great potential in different 

medical fields. However, the main drawback of EIT is its 

low spatial resolution. To solve the problem, deep learning 

methods have been preferred in the image reconstruction 

of EIT. A method based on a hybrid network which 

combines convolutional neural network and transformer is 

proposed to obtain high-quality reconstructed images in 

[1]. In [2], an imaging method which combines 

convolutional neural network with D-bar method is 

proposed. In this paper, a Y-DCNN based image 

reconstruction method is proposed to map the nonlinear 

relationship between measured voltage and conductivity 

distribution. 

2 Methods 

The overall structure of the proposed method based on Y-

DCNN is shown in Figure 1. The network mainly includes 

one convolution block, three different dense convolution 

blocks, connection layer, global average pooling and full 

connection layer. For an EIT system equipped with 16 

electrodes, the input of the network is 16 × 12 boundary 

measurement voltage data. Improved dense convolutional 

blocks of different types are used to obtain information 

from the data of different scales. As a result, the network 

is more sensitive to the input data. Meanwhile, the 

activation function is placed before the convolutional layer 

and the pre-activation strategy is adopted. This simplifies 

the training process of the network and improves the 

generalization performance. Besides, the problem of 

gradient disappearing can be more efficiently solved than 

the traditional approach of applying activation functions. 

The risk of network overfitting is reduced by utilizing 

dense blocks and transition blocks. Mixed pooling 

preserves more input features and effectively prevents 

information loss. The connection layer combines the 

parallel input features of the previous layer. Finally, a 

predicted conductivity change vector containing 2777 

pixels can be obtained from the output. In the study, a 

three-layer head model is built in the simulation. By 

changing the position and size of the inclusion which 

simulate cerebral hemorrhage, a large number of training 

dataset is generated. There are 10235 samples in the 

training dataset and the testing dataset includes 1383 

samples. Each sample contains 192 boundary voltage data. 

Images reconstructed for three models are shown in Figure 

2. The performance of the proposed method is compared 

with three deep leaning methods (FCNN, CNN and 

Densenet) in the previous studies. It is observed that the 

size and the location of the cerebral hemorrhage are more 

accurately recovered in the images reconstructed by the 

proposed method than the other three methods. In addition, 

the background is clearer and free of artifacts. 
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Figure 1: The overall structure of the proposed method.  

Models FCNN CNN DenseNet Y-DCNN

 
Figure 2: Comparison of image reconstruction with the four 

different deep leaning methods. 

3 Conclusions 

In this study, a deep learning-based Y-DCNN method is 

proposed for image reconstruction of haemorrhage in the 

brain EIT. In the future, the proposed method will be 

estimated by phantom experiments. 
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Abstract: Time-constant-domain Electrical impedance 

tomography (tcdEIT) and a spatial shifted measurement 

pattern for dermis layer visualization has been proposed. 

The objective is to image the conductivity distribution in 

the dermis layer in different sodium-ion concentrations. 

The tcdEIT has three steps which are (1) spatial-shifted 

pattern, (2) distribution of relaxation times (DRT), and (3) 

dermis concentration visualization. The simulation results 

show that at 𝜓 = 1 , the reconstructed image show high 

accuracy inside the dermis area. 

1 Introduction 

Excess sodium-ion concentration in the dermis layer of the 

skin is linked to serious diseases, such as psoriasis and 

hypertension. The visualization of the dermis layer is able 

to provide information about the sodium-ion concentration 

level related to the skin diseases to aid in their diagnosis [1]. 

This paper presents a novel approach using electrical 

impedance tomography (EIT) to image the conductivity 

distribution in the dermis layer in different sodium-ion 

concentrations. 

2 Methods 

The tcdEIT has three steps which are (1) spatial shifted 

measurement pattern, as shown in Figure 1, based on quasi-

adjacent measurement pattern, there are three variations 

𝜓 = {0,1,2}[−], (2) distribution of relaxation times (DRT), 

and (3) dermis concentration imaging. The predicted 

impedance of DRT, 𝐙drt  is represented by the following 

equation [2]: 

 𝐙drt(𝑓) = 𝐙∞
′ + ∫

𝛾(ln 𝜏)

1+𝑗2𝜋𝑓𝜏
d(ln 𝜏)

∞

0
 (1) 

where 𝐙∞
′  is the resistance at the high frequency, 𝛾(ln 𝜏) is 

the distribution function of relaxation time, 𝑓  is the 

frequency, and 𝜏  is the relaxation time. The correlation 

between measured impedance, 𝐙meas  and 𝐙drt  provides 

insight into the conductivity distribution in dermis layer, 𝝈d. 

In order to reconstruct 𝝈d , Gauss-Newton image 

reconstruction is used [3]. In order to evaluate the proposed 

method, sodium-ion concentrations 𝑐𝑁𝑎 =
{5, 10, 15, 20, 25, 30, 35, 40, 45, 50}[mM]  are used in 

simulation. 

 
Figure 1: Spatial-shifted measurement pattern. 

3 Results  

Figure 2 shows the simulation results of tcdEIT with 

various sodium-ion concentrations 𝑐𝑁𝑎  and the region of 

interest (ROI) of the dermis layer (black square). The 

sodium concentration 𝑐𝑁𝑎  is shown by the red portion of 

the reconstructed images. At 𝜓 = 1, the image of sodium-

ion concentration distribution is emphasized on the ROI, 

which increases the measurement accuracy. 

4 Conclusions 

Time-constant-domain Electrical impedance tomography 

(tcdEIT) and a spatial shifted measurement pattern was 

evaluated to visualize the sodium-ion concentration in the 

dermis layer. Based on the simulations result, the proposed 

method has successfully visualized the sodium-ion 

concentration distribution at 𝜓 = 1. 
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Abstract: The structure changes of hypertrophy and 

fibrosis in ex-vivo lymphedema subcutaneous adipose 

tissue (LE-SAT) at different lymphedema stages have been 

characterized by porcine phantoms and visualized by the 

four-dimensional open electrical impedance spectro-

tomography implemented with variational autoencoder 

(4D-oEIST). The 4D-oEIST has 3 steps, Step 1: 

Characteristic frequency analysis by the distribution of 

relaxation time (DRT) analysis, Step 2: 4D-oEIST image 

reconstruction at characteristic frequencies, Step 3: Image 

post-processing by variational autoencoder. In order to 

validate the structural visualization capabilities of 4D-

oEIST, porcine LE-SAT fibrosis and hypertrophy 

phantoms are prepared. In the measurements of the porcine 

LE-SAT hypertrophy phantoms and fibrosis phantoms 

within a frequency range of 100Hz-5MHz, the 

characteristic frequency fc
hy and fc

fib are found. Then by 

reconstructing the conductivity difference Δσf by 4D-

oEIST, the corresponding images for the structural changes 

are obtained. 

1 Introduction 

An innovative 4-dimensional open electrical impedance 

spectro-tomography (4D-oEIST) for visualizing the 

structural change of lymphedema subcutaneous adipose 

tissue (LE-SAT) is proposed in this paper. Comparing to 

computed tomography (CT) and magnetic resonance 

imaging (MRI), it is able to capture the different structure 

in LE-SAT tissue without radiation damage or agent 

injection [1, 2]. In previous study, a single row 16-electrode 

EIT sensor is developed to measure tissue conductivity 

change to visualize the sodium concentration in the dermis 

layer [3]. However, it has the restriction of identifying 

different targets and lack of spatial resolution. In order to 

improve this method, this research developed 1) 4×4 planar 

senor to improve the spatial resolution, 2) 4D-oEIST to 

identify fibrosis and hypertrophy in LE-SAT validated 

by finding the characteristic frequency fc
fib and fc

hy for 

fibrosis and hypertrophy, respectively, and reconstruct 

the 4D-oEIST image at fc
fib and fc

hy. 

2 Methods 

2.1 Figures and tables 

Fig. 1 (a) schematic of 4D-oEIST planar sensor and SAT 

measurement, (b) schematic flow of 4D-oEIST method 

2.2 Equations 

Equations should be placed on separate lines and numbered 

 𝑍(𝜔) = 𝑅∞ +
𝑅0−𝑅∞

1+(𝑗𝜔𝜏)𝛼
 (1) 

 𝐽𝑖𝑗(𝑥, 𝑦, 𝑧) = −∫ ∇𝑢(𝐼𝑖) ∙ ∇u(𝐼𝑗)dH
⬚

𝑣𝑜𝑥𝑒𝑙
 (2) 

 
 ∆𝑍 = 𝑍𝑓𝑐1 − 𝑍𝑓𝑐2 = 𝐽𝑖𝑗∆σ (3) 

3 Conclusions 

This paper developed the 4D-oEIST method and validate 

its ability to identify fibrosis and hypertrophy, as 2 structure 

changes in LE-SAT. 
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Abstract: This work demonstrates the limb position effect 

on EIT-based gesture recognition. We investigate the 

application of temporal convolutional networks (TCN) for 

the mitigation of limb position effect. 

1 Introduction 

Gesture recognition is an important tool for human-

computer interaction. As a non-invasive sensing technique, 

EIT has been applied in gesture recognition in recent years 

[1].  Compared with camera-based and myoelectric-based 

techniques, EIT is more robust to the line-of-sight occlusion 

and measuring noise, respectively. However, due to the 

deformation of the muscle when changing limb position, 

EIT signals related to hand motion intention are easily 

overwhelmed by those due to limb movement [2]. In this 

study, we demonstrate the application of TCN for EIT 

based gesture recognition. The accuracy under untrained 

limb positions is compared. 

2 Methods 

Experimental protocol 

We ran an experiment with two able-body subjects to test 

the limb position effect on EIT gesture classification. As 

can be seen in Figure 1, 8 electrodes were evenly distributed 

on the wrist and the forearm of the subject respectively. 

Subjects repeated six gestures 10 times in five different 

limb positions (middle, up, down, left and right), with a 

duration of 3 seconds and an interval of 5 seconds. EIT 

signals were collected at 50 kHz stimulation frequency. 

 
Figure 1: Experimental protocol.   

Data analysis 

The classifier was trained in middle limb position and tested 

in other limb positions with conventional machine learning 

based methods to demonstrate the limb position effects [3, 

4]. Both raw data and calibrated data were evaluated. To 

better extract the temporal information in the EIT signals, 

we used the TCN model for feature extraction. 6 distinct 

structures by combining 3 different numbers of 

convolutional layers and 2 kernel sizes were compared. 

3 Results 

As can be seen in Table 1, although conventional classifiers 

classified the gesture correctly in the trained position, 

significant accuracy drop is observed when limb position 

changes, especially with the absolute voltage data. To 

extract the temporal information using TCN, we adopted a 

400ms window with 100ms overlap, and tested by 6 

different structures (Table 2). With 2 dilation layer and 5 

kernels in each layer, TCN could maintain over 97% 

accuracy in untrained limb positions. The model has only 

0.08M parameters, which is easy to train and suitable for 

the implementation in wearable devices. 
Table 1: Comparison between different preprocessing methods 

and classifiers 

Data type 
    Accuracy 

Limb position 
Classifier 

CNN LDA KNN MLP SVM 

Voltage 

difference 

Middle 0.9910 0.9660 0.9813 0.9877 0.9857 

Untrained positions 0.8778 0.8682 0.8973 0.8634 0.9171 

Absolute 

voltage 

Middle 0.9727 0.9992 0.9996 0.9536 0.8783 

Untrained positions 0.5928 0.2054 0.6345 0.5852 0.6262 

 

Table 2: Classification accuracy and model size of TCN with 

different structure settings 
Kernel size 5 10 

Dilation factor [1,2] [1,2,4] [1,1,2,4] [1,2] [1,2,4] [1,1,2,4] 

Middle position 0.9913  0.9930  0.9933  0.9937  0.9953  0.9950  

Untrained positions 0.9724  0.9675  0.9619  0.9669  0.9621  0.9511  

Model size 0.08M 0.12M 0.16M 0.15M 0.23M 0.31M 

4 Discussions 

Change of limb positions significantly affect the forearm 

EIT signals for making a gesture. Although the time-

different calibration eliminates the common errors in EIT 

measurement, factors such as the gravity effect change the 

conductivity distributions of the forearm. Therefore, it is 

difficult to classify the gestures with just spatial 

information. In this study, we investigate the potential of 

TCN for robust EIT gesture recognition against limb 

position effect. Significant improvement can be observed 

with a relatively small model. 
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Abstract: We develop a flexible miniature Electrical
Impedance Tomography (EIT) sensor tailored for imag-
ing naturally cultured cell clusters based on calibration-free
frequency-difference (FD) imaging. We detail its design,
fabrication, and integration with the FD image reconstruc-
tion algorithm. The effectiveness of the presented sensor
for FD imaging is verified by real-world experiments.

1 Introduction
EIT is gaining prominence for its application in tissue and
cellular imaging [1]. In such applications, the prevailing
operation involves centrifuging the cultured cell suspension
to obtain large cell clusters (∼ 3 mm in diameter), in order
to be imaged by conventional-sized EIT sensors (e.g., ∼ 15
mm in diameter). However, it faces a significant limitation
when it comes to imaging naturally cultured tissue samples,
such as cell clusters that usually range between 300 to 800
µm in diameter. These dimensions fall below the effective
imaging capacity of conventional-sized EIT sensors.

To address these limitations, we develop a flexible,
miniature EIT sensor with 16 electrodes, specifically tai-
lored for naturally cultured cell cluster imaging. We employ
FD imaging to avoid impractical calibration and Structure-
Aware Sparse Bayesian Learning (SA-SBL) [2] is adopted
to for low-noise EIT image reconstruction.

2 Method
Sensor design: we designed and fabricated a miniature 16-
electrode EIT sensor using a flexible printed circuit board
(FPC). Fig. 1 shows the schematic and real sensor. This
sensor has an external dimension of 15 mm by 15 mm with
a thickness of 0.2 mm. It interfaces with external devices
through a 7.2 mm by 100 mm flexible PCB belt. The effec-
tive imaging region is at the center, forming a circular area
with a diameter of 3 mm. Boundary electrodes are fabri-
cated with half-hole technology. It is affixed to a transparent
glass slide to contain a culture medium.

Figure 1: a) Schematic of the miniature EIT sensor. b) Fabricated
flexible miniature EIT sensor.

Image reconstruction: we employ FD-EIT imaging, a
technique that applies excitation currents at two distinct fre-
quencies and measures the voltage difference between the
two frequencies. The linearized model of FD-EIT is:

J∆σσσ = ∆V = Vfo −Vfr , (1)

where J is the sensitivity matrix; ∆σσσ represents the con-
ductivity change distribution; Vfo and Vfr represent the
voltage measurements at the observation frequency fo and
the reference frequency fr, respectively.

SA-SBL is employed for FD-EIT image reconstruction
due to its superior noise-resistance capability:

∆σ = min
∆σ∈RN×1

log p(∆V|∆σ) + λ log p(∆σ;Θ), (2)

where log p(·) is a parametric log prior, Θ is the hyperpa-
rameter and λ is the regularization parameter.

3 Results
We utilized the flexible miniature EIT sensor to sequentially
measure the voltage data induced by the injected current at
frequencies of 10 kHz, 40 kHz, 50 kHz, and 60 kHz. The
10 kHz was set as the reference frequency, while 40 kHz,
50 kHz, and 60 kHz were utilized as observation frequen-
cies to assess variations. Fig. 2 shows that the conductivity
of the cell cluster increases with the frequency of the cur-
rent (40 kHz ∼ 60 kHz), demonstrating the effectiveness
of the miniature sensor in cell imaging. Note that alongside
conductivity changes, size variations in imaging result from
the target’s electrical properties differing across frequen-
cies. Nonetheless, it is important to acknowledge that the
reconstructed images still contain artifacts, primarily stem-
ming from imperfections in hardware design.

Figure 2: Images of cell cluster: a) digital camera, b) microscopic
image, and c) reconstructed FD-EIT images.

4 Conclusions
We demonstrate a flexible miniature EIT sensor that can ef-
fectively image naturally cultured cell clusters in real-world
setups. Future work will optimize sensor signal and image
quality, with the aim of applying it for real-time cell/tissue
imaging.
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Abstract: This work proposes the application of 

contactless electrical impedance tomography (CEIT) for 

monitoring lung respiration. A multi-physics model 

combining biomechanical and electric fields was 

established. The feasibility of applying CEIT for 

respiratory monitoring is confirmed and the impact of 

different excitation frequencies on both impedance 

measurements and image reconstruction in CEIT was 

investigated through simulations.  

1 Introduction 

The contact-based method of measuring impedance in EIT 

leads to high electrode-skin contact impedance which 

represents significant obstacle to the medical application of 

EIT. Additionally, long-term use of the EIT belt also poses 

a risk of pressive injury to the human body. CEIT is a novel 

technique that measures impedance using voltage 

excitation method with no need for conductive pathways 

between the electrodes and the human body, eliminating the 

requirement for full contact. It effectively addresses the 

contact impedance issues of traditional EIT and has the 

potential to be used as a wearable device, offering 

convenience, comfort and hygiene to the patients/users. 

CEIT holds great research significance in the field of 

biomedical science. Yandan Jiang et. al. proposed the 

application of CEIT in brain imaging [1]. This study 

conducted a simulation work on the application of 

contactless EIT in monitoring. 

2 Methods 

The lung motion model [2] and CEIT model is illustrated in 

Fig. 1. Biomechanical field is applied to dynamically 

simulate lung motion. The respiratory motion is modeled as 

a contact problem, and CT images of the lungs at end-

exhalation and end-inhalation are segmented to establish 

the initial geometry model and constrained geometry model 

serving as the contact condition, respectively. The CT data 

is sourced from the Cancer Imaging Archive (TCIA). The 

CEIT sensor consists of 16 electrodes and is positioned 

between the fourth and sixth intercostal space, away from 

thorax with air gaps. And electric field is applied to 

generate the contactless impedance measurement. The 

conductivity and relative permittivity of the air gap are set 

to 0 S/m and 1, respectively. 21 respiratory phases are 

uniformly selected from end-exhalation to end-inhalation, 

and their impedance values are measured through voltage 

excitation method to simulate dynamic monitoring of the 

respiratory process. The sensitivity matrix of CEIT is 

constructed from the plane of the thorax where the 

electrodes located. The time-difference imaging method is 

employed to reconstruct images for each respiratory phase. 

This work investigates the CEIT imaging and measurement 

of excitation frequency in the range of 500 kHz to 20 MHz. 

 
(a) (b) 

Figure 1: (a) Lung motion model. (b) CEIT model. 

3 Results and Conclusion 

This work represents an initial exploration of the 

application of CEIT in lung respiratory monitoring through 

simulation. The feasibility of applying CEIT in respiratory 

monitoring is confirmed. The amplitude of impedance 

measurement is highly dependent on frequency. The higher 

the frequency is, the more pronounced the changes are in 

the impedance amplitude during the respiratory process. 

The change in impedance phase during the respiratory 

process is much more significant than the impedance 

amplitude. As the frequency increases, the change in 

impedance phase becomes greater. 

Based on the measurement accuracy of the E4990A 

Impedance Analyzer, random noise of 𝑒(%) is added to 

magnitude and 𝑒/100 (%) is added to phase, respectively. 

The reconstructed images at different frequencies and 

different noise level (e=1%, 0.1%, 0.01%) based on the 

impedance amplitude and phase are shown in Fig. 2. At 

higher frequencies, the quality of the reconstructed images 

is better. The reconstruction based on impedance phase is 

less affected by noise, resulting in better image 

reconstruction quality compared to the reconstruction based 

on impedance amplitude. 

This work confirmed the feasibility of using CEIT for 

monitoring lung respiration. CEIT can work on voltage 

excitation allowing wider range of frequencies. For the 

measurement and image reconstruction of impedance 

amplitude and phase, higher excitation frequencies lead to 

better results.  

 
Figure 2: Reconstructed images. 
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Abstract: This work presents a novel dynamic imaging 

method of capacitively coupled electrical impedance 

tomography (CCEIT), which is applicable in both industrial 

processes and biomedical applications. In the method, the 

dynamic imaging model is developed by introducing the 

spatiotemporal correlation of the dynamic change of the 

target distribution.  

1 Introduction 

As a contactless alternative to electrical impedance 

tomography (EIT), capacitively coupled electrical 

impedance tomography (CCEIT) provides a new, effective, 

and contactless approach to impedance imaging [1]. 

However, as a newly proposed technique, research for 

CCEIT is still insufficient, especially for the imaging in 

dynamic processes [2]. In the past decades, researchers 

have made efforts to develop dynamic EIT, providing a 

useful reference for the study of CCEIT. However, most 

previous works are based on the Kalman filter (KF) 

methods with the “random work model” for state evaluation 

[3-5]. Generally, the distribution of dynamic 

process/medium exhibits significant regularity over time, 

such as the changes in the shape of the thorax during 

respiration. The “random work model” is unable to identify 

this important feature, hence missing the spatiotemporal 

correlation of the dynamic change. This work focuses on a 

new dynamic imaging method for CCEIT. Considering the 

spatiotemporal change regularity of the target distribution 

in the dynamic process, a dynamic imaging model with 

improved state evolution will be developed. 

2 Measurement Principle 

 
Fig. 1: Measurement principle of CCEIT.  

Figure 1 shows the measurement principle of a 12-electrode 

CCEIT sensor, where an insulating layer is introduced to 

keep the electrodes and the measured biomedical medium 

not in direct contact. Labeling the 12 electrodes as e1, e2, ..., 

e12, and taking the electrode pair e2–e8 as an example, the 

equivalent circuit of the measurement electrode pair can be 

represented by two coupling capacitances C2, C8 in series 

with an impedance Z2,8. C2 / C8 is formed by the electrodes 

e2 / e9 with the insulating layer and the target medium. 

When the excitation AC voltage is applied, the current 

reflects the conductivity distribution of the measured 

medium can be measured for subsequent impedance 

calculation. In this work, the real part of the measured 

impedance is utilized. 

3 Dynamic imaging model for CCEIT 

Unlike the random walk model where the identity matrix is 
used as the transfer matrix and the spatiotemporal evolution 
of the distribution is ignored, an efficient adaptive learning 
model for state evolution is designed. It recursively learns 
the transfer matrix from the states of previous multiple 
moments. Based on the above analysis, the dynamic 
imaging model using KF-based methods for CCEIT can be 
formulated as: 

{
𝐺𝑡 = 𝐻𝑡𝐺𝑡−1 + 𝜔𝑡−1

𝑃𝑡 = 𝑆𝐺𝑡 + 𝜀𝑡
(1) 

where 𝑃𝑡 ∈ ℝ𝑁×1 is the projection vector. 𝑆 ∈ ℝ𝑁×𝑀 is the 

sensitivity matrix and 𝐺𝑡 ∈ ℝ𝑁×1 is the gray value vector of 

the reconstructed image at t. 𝜔𝑡−1 and 𝜀𝑡 are the state noise 

and measurement noise. 𝐻𝑡 ∈ ℝ𝑀×𝑀  is the state transfer 

matrix learned with the learning coefficient 𝜆 as: 

𝐻𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐻𝑡

 
1

2
∑ (𝜆𝑡−𝜏‖𝐺𝜏|𝜏 − 𝐻𝑡𝐺𝜏−1|𝜏−1‖

2

2
)

𝑡−1

𝜏=1

        (2) 

4 Image Reconstruction Results 

A phantom study using saline and plastic rods of varying 
sizes to simulate the respiration process was carried out to 
verify the effectiveness of the proposed method. Fig.2 
presents the image reconstruction results. It is found that the 
reconstructed images obtained by the proposed method 
accurately reflect the practical medium distribution, along 
with the size variations over time. 

 
Fig. 2: Image reconstruction results 

5 Conclusions 

In this work, a dynamic imaging method of CCEIT is 
proposed. The results of the phantom case study for 
respiration imaging show the potential of the method in 
practical applications. 
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Abstract: In this work, a focusing sensing method of 

capacitively coupled electrical impedance tomography 

(CCEIT) is proposed for contactless brain imaging, where 

a focusing excitation approach is adopted to reduce the 

influence of scalp and skull on impedance imaging. 

1 Introduction 

Electrical impedance tomography (EIT) has been widely 

studied and applied in medical field [1]. However, 

traditional EIT still has some limitations. One is the 

relatively large and variable electrode-skin contact 

impedance, which leads to measurement errors [2]. 

Although efforts have been made to model or calculate the 

contact impedance, the adverse influence of the contact 

impedance still exists. Capacitively coupled electrical 

impedance tomography (CCEIT) was proposed as a 

contactless alternative of EIT, which provides a new 

approach for biomedical applications [3]. Our previous 

work has showed the potential of CCEIT in brain imaging 

[4], but the research is still insufficient. In the brain imaging 

case, another problem of impedance imaging is the high 

impedance posed by skull, obstructing the detection depth 

of the effective signal in the region of interest (ROI) and 

limiting the imaging sensitivity [5]. This work aims to seek 

an effective sensing method to overcome the above 

limitations. By introducing the focusing excitation 

approach to improve the CCEIT technique, a brain imaging 

method with contactless feature and higher sensitivity deep 

into the ROI is presented. Simulation will be undertaken to 

validate the method. 

2 The focusing sensing method of CCEIT 

 
Figure 1: Measurement principle of CCEIT for brain imaging.  

Figure 1 shows the measurement principle of CCEIT sensor 

without (left) and with (right) focusing sensing. The 

equivalent circuit of the measurement electrode pair in both 

the two sensors can be represented by the interested 

impedance Z in series with two capacitances C1 and C2. 

But in traditional CCEIT, due to the highly conductive scalp 

and the highly resistive skull, most signal goes through the 

scalp layer. While with the focusing sensing method, 

because of the equipotential property of the large focusing 

excitation electrode, more signal will go into the ROI, 

increasing the detection sensitivity. A 3D CCEIT sensor 

with focusing sensing is designed, which consists of 4 

excitation electrodes, 24 detection electrodes, and two 

insulation layers. Fig. 2 illustrates the structure of the sensor 

with focusing sensing. 

 
Figure 2: Structure of the sensor with focusing sensing.  

3 Simulation validation 

Simulation was conducted to verify the proposed method, 

which compares three aspects including the projection 

intensity, the sensitivity distribution and the image 

reconstruction performance of the CCEIT sensor without 

and with focusing sensing. Projection intensity is defined as 

the average of all the independent projections. An 

excitation signal of 3.3 V in amplitude and 10 MHz in 

frequency was applied. Simulation results show that the 

focusing sensing method can effectively improve the 

projection intensity. Meanwhile, the average sensitivity of 

the sensor with focusing sensing is more than 5 times higher 

than that of the traditional sensor. And focusing sensing can 

improve the sensitivity in the centre region of ROI and 

increase the sensitivity distribution uniformity. Fig. 3 

presents the image reconstruction results reconstructed by 

the linear back projection (LBP) algorithm. Compared with 

the non-focusing case, focusing sensing makes sense in 

obtaining better imaging results. 

 
Figure 3: Image reconstruction results 

4 Conclusions 

This work shows the good application potential of CCEIT 

with a novel focusing sensing method in brain imaging. 
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Abstract: This paper announces the release of version 3.12
of the EIDORS software suite. We review its new features,
and discusses its growth and use.

1 Introduction

We proudly announce the release of EIDORS version 3.12,
for the 24th Int. Conf. on Biomedical Applications of EIT,
in July 2024. The software is available at eidors.org and
licensed under the GNU GPLv2 or GPLv3. Archived ver-
sions are now available on Zenodo [1–5], and all versions
available on sourceforge.net [11–15]

EIDORS provides free software algorithms for forward
modelling and inverse solutions of Electrical Impedance
and (to some extent) Diffusion-based Optical Tomography,
in medical, industrial and geophysical settings. EIDORS
also aims to share data and promote collaboration.

2 New Features

Release 3.12 of EIDORS builds upon a strong foundation in
reconstruction algorithms, adding and improving a number
of aspects.

• D-bar solver with Dirichlet-Neumann estimation
• New data formats (Sciospec and HDF5)[7]
• Improved solver preconditioning
• Improved Octave support
• New faster hash (xxHash) for object caching
• Improved Control of netgen refinement
• 3D perfusion and V̇/Q analysis tools[6]
• Improved FFT-based filtering functions
• Expanded data contributions (e.g. fig.2)
• Improved Instrument models
• Expanded shape library with new species shapes
• (As always) speed-ups and bug fixes

3 Growth

EIDORS-related citations continue to grow. Current cita-
tion results are shown in table 1. The EIDORS code-base
is growing (fig. 1) with significant effort being applied to
improving test coverage, refining performance and imple-
menting new features. In 2012, a dev (development) stag-
ing area was created for contributions in progress.

Table 1: EIDORS Citations (May 2024, scholar.google.com).

Paper Date Citations

[8] A MATLAB package for the EIDORS project . . . 2001 336
[9] Image reconstruction algorithms for . . . 2002 194

[10] A Matlab toolkit for three-dimensional . . . 2002 564
[11] EIDORS: Towards a community-based . . . 2005 38
[12] Uses and abuses of EIDORS: An extensible . . . 2006 956
[13] Simple FEMs aren’t as good as we thought . . . 2008 26
[15] EIDORS version 3.9 2017 34
[15] EIDORS version 3.10 2019 5
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Figure 1: Lines of Code (LoC) in Matlab files in the EIDORS
code-base vs. time; Total (red), EIDORS (i.e. release branch,
brown), Tutorials (green), development code (blue). Releases are
indicated by gray bars (The 3.12 release is at the right).

Figure 2: Reconstruction of 3D EIT data from a horse dur-
ing baseline (left) and rebreathing (right). Data are recon-
structed into a parasagittal slice, modified frontal slice, and
three transverse slices. Middle: normalized to the maximum in
each image. Bottom: normalized to the same limit. Source:
eidors.org/data_contrib/db-horse3d-2024

4 Discussion
The structure of EIDORS has been relatively stable due,
in part, to some early design choices: a modular frame-
work and data structure, cross-platform support, integration
of meshing, tutorials, and the contributed data repository.
These aspects, along with an open source code-base, have
enabled EIDORS to maintain research relevance. Version
3.12 (hopefully) continues the tradition.
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Abstract: Electrical Impedance Tomography (EIT) has the advan-
tage of temporal resolution. However, the EIT inverse problem
suffers from low spatio-temporal resolution reconstruction due to
ill-posedness. This paper proposes a framework with low-rank and
sparse priors for dynamic EIT imaging for lung respiration from
boundary V-t data. The results show satisfactory performance.

1 Introduction
EIT is a novel imaging modality in biomedical applications, partic-
ularly for lung-respiratory monitoring [1]. Due to the nonlinear and
ill-posed nature of EIT, the results are poor with blurry shape and
error conductivities. This paper proposes a dynamic EIT-solving
framework with low-rank and sparse constraints, fully considering
the spatial and temporal correlations of the spatio-temporal matrix,
while a novel variable splitting algorithm combined with total vari-
ation regularizations is proposed to address dynamic EIT matrix
reconstruction.

2 Methods
In dynamic EIT imaging, the change of pixelxican be represented
as spatio-tempiral matrix with respect to timeti as follows Γ = γ (x0, t0) · · · γ (x0, tr)

...
. . .

...
γ (xn−1, t0) · · · γ (xn−1, tr)

. The rows of Γ represent

the distribution of spatial pixels, The columns of Γ represent the
time pixel distribution.

To exploit both the sparse and low-rank properties of the ma-
trix, the problem can be formulated as follows:

Γ∗ = argmin
Γ

∥A (Γ)− b∥2 + λ1 · φ (Γ) + λ2 · ψ (Γ) (1)

where, λ1 and λ2 are regularization weights, ψ(Γ) =∥∥ΦHΓΨ
∥∥
ℓ1

is a surrogate for the ℓ0term and φ (Γ) = ∥Γ∥pp.
When, p ≥ 1, the cost function is convex and hence will have a
unique minimum. To adapt to the sparse nature of image gradients,
the total variation (TV) penalty is employed to constrain the data
consistency term.

Due to the presence of spectral and sparse penalties in the im-
proved model, it is not straightforward to utilize nuclear norm min-
imization. We present the regularization dynamic imaging frame-
work as an unconstrained problem with augmented Lagrange mul-
tiplier method

Lβ1,β2 (Γ;R,Si) = ∥A (Γ)− b∥2

+ λ1φ (R) + λ2

∥∥∥∥∥∥
√√√√q−1∑

i=0

∥Si∥2
∥∥∥∥∥∥
ℓ1

+
β1
2

∥Γ−R∥2 + β2
2

q−1∑
i=0

∥∥∥ΦH
i ΓΨ i − Si

∥∥∥2
(2)

Here, the R and Si are auxiliary variables. The Eq. (2) is solved
by a three-stage alternating direction minimization scheme below

(3) 

Γn+1 = argmin
Γ

∥A (Γ)− b∥2 + β1

2 ∥Γ−Rn∥2

+β2

2

∑q−1
i=0

∥∥∥ΦH
i ΓΨ i − Si,n

∥∥∥2;
Rn+1 = argmin

R
∥Γn+1 −R∥2 + 2λ1

β1
φ (R) ;

Si,n+1 = argmin
{Si}

∑q−1
i=0

∥∥∥ΦH
i ΓΨ i − Si

∥∥∥2+
2λ2

β2 2

∥∥∥∥√∑q−1
i=0 ∥Si∥2

∥∥∥∥
ℓ1

(i = 0, 1, · · · , q − 1)

(3)

The solution of first subproblem in (3) can be solved using CG
method

Γn+1 =

(
ATA+

β1
2
I +

β2
2

q−1∑
i=0

QT
i Q

)−1

×

(
ATb+

β1
2
R+

β2
2

q−1∑
i=0

Si

) (4)

The second subproblem in (3) is solved using SVD-algorithm ex-
pressing as

Rn+1 =

(
Sλ1

β1

◦ T
)
(Rn,Si,n) (5)

where Sλ1
β1

(Γn+1) =
∑min{n,T}

i=0

(
σi −

λ1σ
p−1
i

β1

)
+
uiv

∗
i , and the

third subproblm can be solved by

Si,n+1 =
Qi (Γn+1)∑q−1

i=0 ∥Qi (Γ n+1)∥2
×

(
q−1∑
i=0

∥Qi (Γn+1)∥2 −
λ2
β2

)
+

(6)

3 Results and Conclusions
We conducted a respiratory model with lungs, heart, spine, and
aorta. We selected 11 frames to illustrate the reconstructions using
(3)-(6). Figure 1 illustrates the changes of lung conductivity during
the one respiratory cycle. This research provides an effective idea
to show a clear view of lung-respiratory processes, which might re-
alize a real-time monitoring promoting the clinical application for
EIT.

Figure 1: The dynamic reconstructions of EIT.
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Sensitivity of pair-drive EIT in circular domains
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Abstract: EIT systems typically stimulate and measure

the body across pairs of electrodes. The optimum elec-

trode configuration to maximize sensitivity and resolution

has been considered in several papers. We derive analytic

expressions for the sensitivity and its spatial derivatives in

order to help give insight into system design.

1 Introduction

Most EIT devices are pair-drive: pairs of electrodes are

used to stimulate and measure from the body. There has

been some discussion in the EIT literature about the best

choice of angle between the driving electrodes (also called

the “skip” pattern, referring to the number of electrodes

“skipped” between the active pairs). This literature [1, 2, 3]

has concluded that EIT sensitivity improves dramatically

with pair-drive angle. However, this improved sensitivity

appears to be at the expense of resolution, and larger skip

patterns have less ability to resolve the two lungs. One pro-

posed explanation of this effect is that the resolution de-

pends both on the sensitivity and its spatial derivative [4].

In order to further explore this issue, this paper devel-

ops analytic expressions for the sensitivity of pair-drive EIT,

from which an intuition of the compromises can be deter-

mined.

2 Sensitivity Calculations

The pair-drive configuration is illustrated below (Fig 1).

r

A B

C

D

2α

2α

2γ

δ

α = 1
2
(A–B) = 1

2
(C–D)

γ = 1
4
(A + B – C – D)

δ = 1
4
(A + B + C + D)

A = δ + γ + α

B = δ + γ − α

C = δ − γ + α

D = δ − γ − α

A–C = 2γ A+C = 2(δ + α)
A–D = 2(γ + α) A+D = 2δ
B–C = 2(γ − α) B+C = 2δ
B–D = 2γ B+D = 2(δ − α)

Figure 1: Unit radius circular or cylindrical domain with elec-

trodes. Sensitivity at point, r (location (x, y)) is calculated, using

drive pair (A→B) and measurement pair (C→D).

Initially, consider monopolar stimulation and measure-

ment (stimulation with one electrode, S, and measurement

with one electrode, M) and denote the sensitivity J , using

an adjoint-field formulation

Jr;S→M ∝ ∇VS(r) · ∇VM (r) =
r⃗S

∥rS∥d
·

r⃗M

∥rM∥d
(1)

where r⃗S = r⃗ − S⃗, r⃗M = r⃗ − M⃗, and d is the dimension of

the model (2 or 3 D). The equation simplifies at the centre

r = 0, Jr ∝ cos(S − M); notation is (ab)used to consider

points to be angles or vectors.

Pair-drive and measurement may be derived from the

monopolar case, using Jr = Jr;A→C − Jr;A→D − Jr;B→C +

Jr;B→D. Sensitivity for r at the centre is:

Sr=0 = cos(A–C)− cos(A–D)− cos(B–C) + cos(B–D)

= cos(2γ) sin2(α) (2)

in terms of the angles defined in Fig 1.

3 Spatial derivatives of sensitivity

Equations for the spatial derivatives, ∇J , are more compli-

cated. We show ∂
∂x

Jr;
∂
∂y

Jr is obtained by rotation of δ.

∂
∂x

Jr;S→M ∝
rS,x + rM,x

(∥rS∥∥rM∥)d

− d(⃗rS · r⃗M)
rS,x∥rM∥2 + rM,x∥rS∥

2

(∥rS∥∥rM∥)d+2
(3)

At the centre, r⃗ = 0:

∇Jr=0 ∝ (cos(S–M)− 1
d
)

[

cos(S) + cos(M)
sin(S) + sin(M)

]

(4)

For pair drive, we can calculate

∇Jr=0 ∝

[

cos(δ)
sin(δ)

]

cos(3γ) sin2(α) cos(α) (5)

Finally, the ratio of spatial derivative to sensitivity is

∥∇Jr∥

Jr

∝
cos(3γ)

cos(2γ)
cos(α) (6)

4 Discussion

It is hoped that analytic expressions for pair-drive sensitiv-

ity provide insight into the compromises involved in EIT

systems design.

The formulae for pair-drive sensitivity take a surpris-

ingly simple form and are a function of simple trigonomet-

ric expressions for the central point in a cylindrical domain.

In a full pair-drive system, γ and δ are rotated around and

so will integrate to unity. The remaining factor is the sen-

sitivity to the “skip” distance, α. Because of the additional

cos(α) factor, the resolving component of ∇J decreases as

skip increases. Antother interesting effect is the cos(3γ) vs

cos(2γ), although it’s unclear how this affects a full EIT

measurement.
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Abstract: Currently, real-valued deep convolutional neural
networks (CNNs) can usually reconstruct only images de-
scribing the resistivity or permittivity distributions, which
ignore the complex natures of electrical properties in the
EIT task. In this paper, we use a UNet designed by com-
plex convolutional operations to improve the reconstruction
quality of complex conductivity images for EIT, referred to
CEIT. The results show that the method can effectively
represent the distribution images of resistivity and permit-
tivity simultaneously.

1 Introduction
Electrical impedance tomography (EIT) is a visual tech-
nique that shows the conductivity and permittivity distribu-
tions of the body domain in clinical applications. Nowa-
days, the learning-based methods, especially the CNNs-
based models for solving inverse problems[1], only utilize
the real-value information seldom taking into account the
complex electrical parameters. In this paper, we proposed
a novel U-Net framework with complex convolution oper-
ations to reconstruct lung conductivity and permittivity im-
ages that are of clinical usefulness in distinguishing certain
conditions (e.g., pneumothorax and hyperinflation)[2].

2 Methods
The EIT image describes the complex electrical distribution
of organs, which can be expressed by the following Laplace
equation

∇ · (γ (r)∇u (r)) = 0, r ∈ Ω (1)

where the γ (r) = σ (r) + jωε (r) denotes the admittivity,
σ (r) is the conductivity and ε (r) is the permittivity, u (r)
is the electric potential.

The admittivity distributions could be denoted as a
complex-value matrix x ∈ C, thus, we propose a U-Net
similar to a real-value CNN to reconstruct complex-EIT
images[3], referred to the CEIT. The CEIT and details are
shown in Fig. 1, where the input is a complex-value feature
map with the size of 256 × 256 × 1 initially computed by
the L2 regularization. This complex feature is split into real
and imaginary feature maps.
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0Figure 1: The architecture of CEIT.

The CEIT is composed of three blocks, complex con-
volution, radial BN, and CReLU function. The complex
feature denotes as A = Ax + jAy , the kernel denotes as
K = Kx + jKy , three operations are calculated as follows:

A⊛K = (Ax ⊛Kx −Ay ⊛Ky)+j (Ay ⊛Kx +Ax ⊛Ky)
(2)

RBN =

(
R− µR√
σ2
R + ϵ

)
γ + β + τ (3)

CReLU = ReLU (Re (A)) + jReLU (Im (A)) (4)

Moreover, the real-value average pooling or transposed
convolution is introduced to aggregate features or recon-
struct features in two adjacent modules.

3 Results and Conclusions
We give the reconstructions using L2 regularization and
CEIT, as shown in Fig. 2. It can be concluded that the
complex-based CNN can accurately reconstruct the conduc-
tivity and permittivity distributions. Therefore, the CEIT
can further realize the information of the real and imagi-
nary parts and also realize the analysis of the magnitude
and phase information of the EIT image. This method pro-
vides a new parameter visualization scheme for clinical ap-
plications, which have clinical usefulness in distinguishing
between injured conditions such as a pneumothorax and hy-
perinflation [2].

L2 RegGround Truth

Figure 2: The reconstructions with different methods.
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Abstract: Optimization of sensor design for the detection 

of diabetic foot ulcers (DFUs) is achieved by coupling of 

electromagnetic simulation and electrical impedance 

tomography (EIT) method. Firstly, the concentration 

regions of plantar pressure throughout the gait cycle are 

tested to determine the high-risk regions for ulcers 

susceptibility. Secondly, the electrodes’ location is set to 

two regions (forefoot and heel) according to the plantar 

pressure concentration area during a gait cycle. Each area 

is equipped with 16 electrodes in total, e = 4 × 4. Thirdly, 

a simplified plantar tissue model is imaged in three 

dimensions by using electromagnetic simulation coupled 

with the EIT method to derive the optimal electrode size for 

the sensor design, D = 8 mm. In addition, electrode number 

6 (central electrode) is used as the constant electrode to 

obtain the optimal measurement pattern, which has the 

highest Image Correlation Coefficient ICC = 0.7364. 

1 Introduction 

• The region of plantar pressure concentration is 

highly susceptible to ulcers [1]. 

• The EIT method is sensitive to changes in the 

electrical properties of biological tissues caused by 

diabetic foot ulcers [2, 3]. 

• Electromagnetic simulation is used to set boundary 

conditions for each layer of plantar tissue to 

visualize the effect of electrode size and excitation 

pattern on imaging accuracy. 

2 Method 

2.1 Design of EIT sensors based on high-risk regions 

for ulcers 

Figure 1 shows the acquisition of regions at high-risk for 

ulcers based on plantar pressure distribution thereby 

determining the EIT sensor electrode arrangement. The 

position of the plantar sensor is in the main loading areas of 

the forefoot and heel. 
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Figure 1: Design of EIT sensor electrode arrangement based on 

plantar pressure distribution. 

2.2 Imaging DFUs by EIT method 

Figure 2 shows the EIT three-dimensional image 

reconstructed from the boundary voltages of each excitation 

by placing the plantar sensor under a simplified 

electromagnetic simulation model of three-layer plantar 

tissue. The reconstruction of EIT image is based on the 

conductivity difference 𝛔𝐶  between DFUs and normal 

tissues, which is calculated as follows:  

 𝛔𝐶 = 𝐉𝑇∆𝐙 − (𝐉𝑇𝐉 + 𝜇𝐈𝐴𝐶)
−1𝐉𝑇∆𝐙       (1) 

where, ∆𝐙 is the impedance difference, J is the Jacobian 

matrix, IAC is the excitation current. 
DFUs
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multiplexing device 1
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Figure 2: Diagram of early detection of DFUs using EIT 

method. 

3 Results 

Figure 3 shows the electromagnetic simulation results for 

EIT sensor design optimization. The image correlation 

coefficient ICC = 0.6050, 0.7109, 0.3354 when the 

electrode size is D = 4, 8, 12 mm, respectively; ICC = 

0.6927, 0.7364, 0.6651 when the number of constant 

electrode eg is 3, 6, 16. The ICC is expressed by following 

equation: 

 𝐼𝐶𝐶 =
∑ (〈∆𝜎𝑔

𝐶〉−〈∆𝜎𝐶〉̅̅ ̅̅ ̅̅ ̅̅ )(∆𝜎𝑔
𝐶−∆𝜎𝐶̅̅ ̅̅ ̅̅ )𝑀

𝑔=1

√∑ (〈∆𝜎𝑔
𝐶〉−〈∆𝜎𝐶〉̅̅ ̅̅ ̅̅ ̅̅ )

2
∑ (∆𝜎𝑔

𝐶−∆𝜎𝐶̅̅ ̅̅ ̅̅ )
2

𝑀
𝑔=1

𝑀
𝑔=1

 (2) 
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Figure 3: The electromagnetic simulation results for EIT sensor 

design optimization. 

4 Conclusions 

The key findings of this study are as follows: 

1. The position of the plantar sensor is arranged in the 

main loading area of the forefoot and heel. 

2. The optimal electrode size for the EIT sensor design 

is D = 8 mm; electrode number 6 (center electrode) 

is used as the constant electrode for the best 

measurement pattern with the highest image 

correlation coefficient ICC = 0.7364. 
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Abstract: This study aims to investigate the feasibility
of utilizing two-layer electrical impedance tomography to
identify obstruction sites (retropalatal vs. retroglossal lev-
els) in the upper airway during sleep, thereby aiding in the
design of surgical interventions in clinical practice.

1 Introduction
The first-line treatment for obstructive sleep apnea (OSA)
is continuous positive airway pressure (CPAP). However,
long-term compliance with CPAP is not consistently high
despite various attempts to improve it [1]. Therefore, it
is necessary to develop an alternative non-CPAP therapy
which requires effective patient selection methods. EIT
can noninvasively identify upper airway narrowing or clo-
sure during sleep by attaching a single array of electrodes
to the face, and the feasibility has been confirmed by
polysomnography (PSG) [2]. In this work, we investigate
whether the double-layer EIT system can differentiate be-
tween retropalatal and retroglossal collapse during sleep.

2 Methods
One healthy subject and 26 patients diagnosed with OSA
were recruited for the study. The severity of OSA was con-
firmed through full-night PSG. On another night, two layers
of electrodes for Electrical Impedance Tomography (EIT)
were attached along the face and neck of the participants, as
shown in Figure 1, including the regions of the retropalatal
and retroglossal airways, respectively.

Figure 1: Two layers of electrodes were attached along the face
and neck of the subjects.

The participants slept on the table of a computerized to-
mography (CT) machine while wearing a portable PSG de-
vice to confirm respiratory events. This setup allowed for
comprehensive monitoring and multidimensional assess-
ment of the upper airway dynamics during sleep, provid-
ing valuable insights into the mechanisms underlying OSA.
Continuous data from EIT were collected, and for each sub-
ject, one baseline (awake) and eleven CT scans associated
with respiratory events were obtained for each subject (286

scans in total). The upper airway dynamics were recon-
structed and extracted from the measured EIT data using
the source consistency EIT algorithm [3]. The correlation
was analyzed between the size of upper airway in CT im-
ages and that in EIT images to validate the study.

3 Results
In Figure 2, synchronized EIT data and signals from the
portable sleep monitoring device are described. The bottom
images depict sets of CT images and their corresponding
reconstructed EIT images at the retropalatal and retroglos-
sal levels. The vertical dotted red line stands for the timing
when the CT scan and their corresponding electrical con-
ductivity data were obtained during hypopnea.

Figure 2: An example of synchronized EIT data, CT images, and
signals from PSG during a hypopnea event.

4 Conclusions
Multi-layer EIT can be a useful noninvasive monitoring
technique to identify the obstruction sites during sleep in
OSA patients.
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Abstract: A low-power and portable EIT system based on 

Android platform was developed. The system may be used 

in bedside or integrated with ventilator for monitoring 

lung ventilation. Based on Pad/Mobile Phone for Android 

system, battery powered, more than 20fps, Wi-Fi data 

transmission and small size (15x8x2.5cm) make it ideal 

for most portable applications. 

1 Introduction 

In the clinical applications of electrical impedance 

tomography (EIT), a data acquisition system (DAS) with 

smaller size, lower weight, and high speed fits better for 

the needs of bedside monitoring or patient transportation. 

Such features of DAS module, such as small form factors 

(low mass/volume), low power, and compatible with other 

medical devices, make it easier integrated with ventilators 

or monitors [1]. 

2 Methods 

The system mainly includes EIT DAS module, user APP 

based on Android platform, and electrode belts. Fig. 1 

shows the structure diagram of the system. The 16-

electrodes belt was connected to the EIT DAS, the 

measured impedance data were transmitted to PAD or 

Mobile phone via Wi-Fi; the received data were analyzed 

and reconstructed by EIT APP based on Android platform. 

 

  
 

Figure 1: Structure diagram of the system  

2.1 DAS design 

DAS powered by battery is essential for reducing size and 

weight. A multi-frequency FPGA-based DAS [2] with 

single current source and single voltage measurement 

channel provides many features, such as low cost, low 

power, and high-speed. Sine signal generated by DDS on 

the FPGA was converted to analog domain via a high 

speed digital-to-analog converter (DAC), and a high speed 

analog-to-digital converter (ADC) was used to sample 

measured voltages for the digital demodulation. Low 

power MCU was applied to transfer the demodulated 

impedance data and to receive the system configurations 

via Wi-Fi module. 

2.2 APP design 

The EIT APP was developed based on Android studio and 

HUAWEI MatePad (DBR-W00, Qualcomm Snapdragon 

865 CPU, 8G memory, 128G SD, 2560X1600 pixel 

resolutions). The APP includes the commonly used 

functions, such as start-up registering, system setup, data 

processing, dynamic image reconstruction, contact 

impedance analyzing and data storage, etc.  The APP also 

runs well based on the HUAWEI Mobile phone (ALP-

TL100, HiSilicon Kirin 970 CPU, 4G memory, 64G SD, 

2560X1440 pixel resolution). 

2.3 DAS specification 

The specifications of the DAS include: size 15x8x2.5cm, 

weight less than 150g; accuracy 60dB; imaging 

speed >20fps; frequency 50kHz (20-200KHz adjustable); 

16 PET disposable electrodes; CCS <5mA RMS; battery 

power time >10h; power consumption <3W; battery 

charge port USB mini/Type-C; supportable data 

transmission mode: BLE/Wi-Fi/Serial Port or 

CAN/SPI/USB/GPIO; data storage SD card support. 

3 Conclusions 

Preliminary results in healthy and patients show that the 

system could acquire dynamic EIT images at a speed of 

20fps for lung ventilation monitoring. 

The DAS will be integrated with ventilator system to gain 

a real-time feed-back from EIT for guiding ventilation 

parameter configurations. 
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Abstract: The noninvasive electrical impedance tomo-

graphy system was adopted to 375 patients underwent 

total aortic arch replacement to monitor their cerebral 

impedance intraoperatively. Average resistivity value (Δ
ARV) and maximum asymmetry index (MAI) during 

hypothermic circulatory arrest  was significant differences 

in patients with Neurological dysfunction (ND)(+) and 

patients without ND(-) (P = 0.041; P = 0.034). EIT is a 
promising technique to provide an option for multimodal 

cerebral monitoring in total aortic arch replacement 

surgery. 

1 Introduction 

Neurological dysfunction (ND) is one of the most 

common complications after total aortic arch replacement 

(TAAR). The aim of this study was to investigate the 

correlation between EIT extracted parameters and ND, so 

as to assess the feasibility of EIT for intraoperative 

monitoring of the total aortic arch replacement. 

2 Methods 

375 patients were monitored intraoperatively using the 

EIT equipment (EH-300, UTRON Technology Co., Ltd., 

Hangzhou, China) (Figure1). Details of surgery and EIT 

data acquisition have been described previously.[1] The 

primary end point was the neurological dysfunction 
(defined as stroke, transient neurological deficit or 

coma).[2] The secondary end point was in-hospital 

mortality. 

In order to reflects overall changes in cerebral resistivity, 

we extract five parameters during hypothermic circulatory 

arrest (HCA) period: average resistivity value (∆ARVHCA), 

maximum resistivity asymmetry index (MRAIHCA), time 

integral of resistivity asymmetric index (TRAIHCA), kHCA 

and maximum asymmetry index (MAIHCA). 

2.1 Figures and tables 

EIT extracted parameters of patients with and without 

neurological dysfunction are displayed in Table 1. 

∆ ARVHCA and MAIHCA was significant differences in 

patients with ND(+) and patients without ND(-). However, 

there was no significant difference in other parameters. 

 
Figure 1: Graphical abstract 

2.2 Equations 

ARV =  
1

M
∑ Ak xk, k = 1, … , M (1) 

ARV reflects the change of electrical impedance of the 

whole brain during surgery. 

               ∆ARVHCA = ARVafter HCA − ARVbefore HCA (2) 

kHCA =
∆ARVHCA

tHCA
 (3) 

𝑅𝐴𝐼 = 𝐴𝑅𝑉𝐿 − 𝐴𝑅𝑉𝑅 (4) 

                               𝑇𝑅𝐴𝐼 = ∫ 𝑅𝐴𝐼 ∙ 𝑑𝑡
𝑒𝑛𝑑 𝑜𝑓 𝐻𝐶𝐴

𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝐻𝐶𝐴
 (5) 

AI =
𝐴𝑅𝑉𝐿−𝐴𝑅𝑉𝑅

ARV
 (6) 

3 Conclusions 

EIT can provide an option for multimodal cerebral 

monitoring in total aortic arch replacement surgery. 
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Table 1: EIT extracted parameters of patients with and without neurological dysfunction. 

Variable All (N=375) ND(-) (N=169) ND(+) (N=209) P-value 

ΔARVHCA(AU) -0.003±0.035 0.007±0.035 -0.007±0.035 0.041 

KHCA(10-3AU/min) -0.033±0.864 0.045±0.936 -0.096±0.798 0.118 

MRAIHCA(AU) 0.011±0.014 0.012±0.018 0.010±0.010 0.171 

TRAIHCA(AU) 6.481±18.776 6.295±21.119 6.632±16.708 0.866 

MAIHCA 0.048±0.055 0.055±0.069 0.042±0.038 0.034 
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Abstract: This contribution describes a self-developed,

FPGA-based EIT research platform. The resulting device

allows any measurement pattern, up to five simultaneous

excitation frequencies and any reconstruction algorithm.

1 Introduction

As commercial EIT systems usually only grant limited ac-

cess to their configuration, the Chair of Medical Informa-

tion Technology (MedIT) is currently developing its own

EIT research platform named AixTOM. It is characterised

by open interfaces, multifrequency current injection, arbi-

trary measurement patterns and reconstruction algorithms,

and easy expandability on both the hardware and software

side. AixTOM, depicted in Fig. 1, will be made available to

third parties when conducting publicly funded research.

Figure 1: AixTOM in action (on an electrical phantom).

2 Methods

2.1 Hardware

The hardware design is depicted in Fig. 2. The central unit

is a Xilinx Zynq-7000 FPGA. To reduce production costs,

the ready-made evaluation kit ZC706 was chosen. D/A and

A/D conversion are done by the expansion card FMC 144.

Power conditioning, current generation, multiplexing and

signal amplification are handled by circuit boards developed

in-house. These boards are in the form of plug-in units to

keep the hardware expandable. To maximise patient safety,

the Ethernet connection to the controlling PC runs through

a fiber optic cable. The supply voltage of 24 V is provided

by a medical power supply. Overcurrent is prevented by a

hard-wired emergency shutdown.

This system allows up to five simultaneous excitation

frequencies in the range of 40 kHz to 1 MHz. For now only

sinusoidal signals are supported, but this could be changed

in the FPGA firmware. The frame rate depends on the se-

lected FFT resolution, it goes from 10 - 50 fps. 32 arbitrar-

ily selectable channels for exterior electrodes are provided.

Additionally, there are four channels for interior electrodes

(e.g. for use in the esophagus). However, these have not yet

been connected and tested.
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Figure 2: AixTOM hardware schematic (modified from [1]).

2.2 Software

Initially, an AixTOM software based on MATLAB and EI-

DORS was written. In 2023, the development of a new

software was started, see Fig. 3. This software runs inde-

pendently from MATLAB, which requires a license, and is

more user-friendly and optically pleasing. It is designed in

such a way that it can easily be extended by new recon-

struction algorithms, or even new tabs to switch to different

research contexts like lung perfusion imaging.

Figure 3: New AixTOM user interface.

3 Conclusion and Outlook

The result is a multi-frequency EIT device that can be con-

nected to an ordinary PC via Ethernet. The data can be

retrieved via a TCP socket, which gives the user unlim-

ited freedom in software and reconstruction methods. The

same applies to the measurement pattern, as the multiplex-

ers determining it can be set from the PC. Non-EIT-related

bioimpedance measurements (in the range of 0.1 - 50Ω) are

also possible.

The system is currently being ported to a more up-to-

date FPGA board. Human approval is also being sought (as

of February 2024).
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Abstract: This study addresses inherent biases in perfu-
sion derived from contrast EIT imaging due to oversimpli-
fied double-compartment model assumptions, by setting it
against a more general four-compartment model. The for-
mer shown to likely be inadequate for over 75% of pixels in
porcine imaging data, which calls for either more advanced
modelling or better study design practices to improve the
reliability of the technique.

1 Introduction
Thoracic EIT is pivotal for non-invasive lung perfusion met-
rics using indicator-bolus imaging. Traditionally, this is an-
alyzed via a double-compartment model, where heart region
signals indicate blood mixing from both heart chambers
(two peaks), and lung signals suggest a single compartment
(one peak) which are fitted with a gamma-variate function
or directly analysed for perfusion metrics [1]. However, dis-
crepancies arise, notably in the mediastinum region, where
signals defy expected gamma-variate shapes, as in Fig. 1,
and EIT’s partial volume effect questions the use of hard
binary compartment classification. This study critiques ex-
isting model biases, advocating for refined methodologies
to bolster EIT’s accuracy and reliability.

Right
Lung

Left
Lung

Mediastinum

Heart

1 compartment

2 compartments

Figure 1: Typical compartment assumptions and key pixels.

2 Methods & Materials
To compare with current methodologies, we replicated
the double-compartment model from [1] and extended our
analysis to a more nuanced four-compartment model, ac-
commodating simultaneous compartment presence in pix-
els to address existing model limitations. A 60-second
EIT recording from an intubated healthy porcine subject
injected with 10 mL of 0.9% NaCl was reconstructed us-
ing the GREIT algorithm [2] and pre-processed to remove
high-frequency noise and cardiac information, trends, and
baseline drift. Region-of-interest (ROI) delineation em-
ployed the k-means hard clustering method from [1] which
uses normalized mean transit-time and peak amplitude val-
ues extracted from pre-processed pixel signals to sort the
pixels into so-called pre-lung, lung, and post-lung classes.
Ultimately, lung pixels are analysed as single compart-
ments, claiming the pre-lung and post-lung information is

mixed into a 2-compartment region corresponding to the
heart. The segmented ROIs are compared with the four-
compartment model ROIs in Fig. 2. We applied the four-
compartment model through non-negative matrix factoriza-
tion (extended from [3]) of the data matrix Y ∈ RT×1

into a temporal dynamics X ∈ RT×4 and a spatial matrix
A ∈ R4×P where T and P are the number of samples and
pixels, respectively. Normalizing matrix A with the pixel-
wise sum of all component amplitudes approximates the rel-
ative regional significance of each component.

3 Results & Discussion
By thresholding at 5%, a map indicating the number of rel-
evant components in each pixel N was obtained, with these
findings presented above in Fig. 2. Analysis reveals the
double-compartment model’s validity holds mainly in cen-
tral heart and peripheral lung pixels. Conversely, it fails in
75.10% of the image pixels with regions where up to three
additional relevant components may be missing. Moreover,
belt placement and anatomical variations, such as in the rel-
ative positioning of lungs to the heart in human and porcine
subjects, as illustrated below in Fig. 2, contribute to this
skewing of perfusion estimates later on.

Double-compartment Four-compartment
4

3

2

1

0

N

Typically 
Analysed
Volume

Isolated 
Compartment

Volume

Isolated 
Compartment Volume

PorcineHuman

Figure 2: Number of pixel compartments (N ) identified by both
models (above). Subject anatomy and target volumes (below).

4 Conclusions & Outlook
Our findings reveal a spatially-varying bias in EIT perfusion
studies, rooted in oversimplified model assumptions. Fu-
ture research must pivot towards sophisticated algorithms
capable of managing up to four (at least) compartments
per pixel, and/or better identifying true single-compartment
pixels, while also considering the subject’s anatomy and
belt positioning to mitigate compartment mixing.
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Abstract: We introduced a dual-modal imaging tech-
nique combining Electrical Impedance Tomography (EIT)
and Lens-Free Imaging (LFI). Our approach, using the
Hologram-Guided Group Sparsity (HGGS) algorithm with
a hologram, can reconstruct high-quality conductivity dis-
tribution with more accurate structural information.

1 Introduction
Multi-modal EIT imaging is proposed to enhance image re-
construction quality by incorporating additional informa-
tion. LFI is an emerging imaging technique that utilizes
diffraction and projection patterns, i.e. holograms, without
traditional lenses. The compact setup and large Field-Of-
View (FOV) of LFI make it promising for various biomedi-
cal imaging tasks. Integrating high-resolution 2D hologram
data from LFI with EIT can enhance conductivity recon-
struction quality with improved structural information [1].

2 Method

Ultra-large-FOV LFI platform

Light source

Incident waves

EIT sensor

CMOS sensor

Figure 1: Left: the LFI setup. Right: Schematic of our dual-
modal imaging setup. The hologram of the sample in the EIT
sensor is captured by a CMOS sensor at the bottom.

The platform combines a 16-electrode EIT sensor with an
ultra-large FOV telescope cold camera, shown in Figure 1.
The light source is LED with a wavelength of 420nm.

The binary mask images are automatically generated by
the Segment Anything Model (SAM) [2] from holograms.
After calibration, we labelled individual pixels as N groups
to express conductivity changes (∆σ) in individual regions.

The reconstruction is conducted by optimization based
on weighted group-level constraint and Total Variation (TV)
constraint:

{
min∆σ

∑N
i=1 ωi ∥∆σgi∥2 + ∥∆σ∥TV

s.t. J∆σ = ∆V
(1)

where
∑N

i=1 ωi ∥∆σgi∥2 is the weighted l2,1 norm and ωi

is the weight for ith group, ∥∆σ∥TV denotes the isotropic
TV norm to smooth the estimated EIT image. To solve Eq.
(1) we adopted accelerated ADMM with an over-relaxation
step [1].

3 Results

a b

c d

X / Pixels

Y 
/ P

ix
el

s

Hologram Grouping result from mask image

Reconstruction EIT/LFI image fusion

Figure 2: a hologram; the mask is generated from a by semantic
segmentation. b, pixel grouping from the mask. c, the reconstruc-
tion result by optimization (64 × 64 pixels). d, EIT/LFI image
fusion of a and c with the semantic mask.

Figure 2 shows the reconstruction results of real-world ex-
periments. The hologram captured by the camera under LFI
shows the clear boundary of the object in the EIT sensor.
After applying SAM [2], we generate a binary mask image
(1024 × 1024 pixels) for pixel grouping. The fused result
showcases both high-resolution object morphological fea-
tures and conductivity distribution.

4 Conclusions
We introduced HGGS, a dual-modal imaging approach
merging EIT and LFI, showcasing improved conductivity
contrasts in EIT reconstruction. Future work includes ex-
tending the method to 3D imaging and exploring dynamic
imaging of tissues/cells.
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Abstract: A Class II medical device registration clinical 

trial has been conducted for Utron MH-200, a multi 

frequency magnetic induction tomography (MIT) device 

used to assist in the detection of severe haemorrhagic 

stroke larger than 30mL. 132 stroke patients from three 

hospitals were enrolled. The sensitivity, specificity, and 

accuracy of auxiliary recognition for cerebral haemorrhage 

greater than or equal to 30mL were 90.16%, 92.96%, and 

91.67%, respectively. 

1 Introduction 

Stroke is a common disease with high incidence rate, high 

disability rate and high mortality, which brings heavy 

burden to society and families. Although imaging 

examinations such as CT and MRI can accurately 

diagnose stroke, the number of hospitals with these 

devices and experienced doctors is limited and unevenly 

distributed. Screening for severe stroke patients before 

transportation to the hospital is a feasible option. 

Stroke symptoms such as intracranial haemorrhage and 

ischaemia will lead to changes in the distribution of 

electrical impedance. Therefore, both EIT (Electrical 

Impedance Tomography) and MIT have the potential to be 

competent for this task. MIT is more competitive due to its 

non-contact nature. 

2 Methods 

Utron MH-200 is a multi-frequency MIT device 

produced by Hangzhou Utron Technology Co., Ltd., 

originating from the Fourth Military Medical University, 

as in Fig. 1 and [1–4]. MH-200 is designed for rapid 

detection of stroke. The frequency range is from 15MHz 

to 35MHz, with a step size of 1MHz. 

 
Figure 1: Utron MH-200. 

2.1 Overview of clinical trial 

Starting from July 2022, Sir Run Run Shaw Hospital, 

affiliated with the School of Medicine of Zhejiang 

University, conducted a multicentre clinical trial as the 

team leader to verify the accuracy and safety of MH-200, 

Class II medical device, in assisting in screening for 

severe haemorrhagic stroke, refers to a haemorrhagic 

stroke of 30mL or more. 

The clinical trial follows a double-blind principle. 

Inclusion criteria: 1) 18 years old and above, regardless of 

gender; 2) After CT and/or MRI examination, clinical 

diagnosis of acute stroke; 3) It is expected that the test 

equipment can be safely worn for at least 5 minutes. As of 

October 2023, a total of 132 stroke patients were enrolled, 

including 61 cases of severe cerebral haemorrhage greater 

than or equal to 30mL (positive), 71 cases of cerebral 

haemorrhage less than 30mL and ischaemic stroke 

(negative). 

Head CT/MRI scanning and interpretation serve as the 

gold standard to calculate accuracy indicators such as 

sensitivity and specificity. Another control is the NIHSS 

(National Institute of Health stroke scale). 

MH-200 provides a set of dual frequency differential 

reconstructed images and a one-dimensional index, MBA 

(Mean Bio-impedance Asymmetry), for determining 

positive and negative results. 

2.2 Results of clinical trial 

The sensitivity, specificity, and accuracy of MH-200 

assisted recognition for severe cerebral haemorrhage ≥ 

30mL were 90.16%, 92.96%, and 91.67%, respectively. 

The AUC (Area Under the Curve) of ROC (Receiver 

Operating Characteristic) for MBA assisted recognition of 

≥30mL intracerebral haemorrhage is 0.8996, significantly 

higher than that of NIHSS with AUC of 0.7686, as in Fig. 

2. 

 
Figure 2: ROC curve of MBA and NIHSS. 

3 Conclusions 

The clinical trials have shown that Utron MH-200 can 

assist in the diagnosis of severe haemorrhagic stroke with 

over 90% accuracy, providing an optional medical device 

for pre-hospital triage. 
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Abstract: To optimize CPAP treatment for OSA patients, 

this study employs PSG and high-speed impedance 

imaging to observe and quantify changes in ventilation, 

blood perfusion, and the V/Q ratio under varying pressures 

during the CPAP titration study. It provides insights for 

finding a patient-specific optimal pressure. 

1 Introduction 

Continuous positive airway pressure (CPAP) is the 

primary therapeutic approach for obstructive sleep apnea 

(OSA) patients. In hospitals, patients sleep all night long 

wearing CPAP masks and polysomnography (PSG) 

sensors, and a CPAP titration study is performed to find 

the optimal pressure for each patient by adjusting the 

pressure of the CPAP device [1]. Despite these efforts, 

CPAP titration studies report that 28-50% fail to find the 

optimal pressure [2]. In addition to factor analysis to 

prevent failure in CPAP titration studies, research was 

performed to set sub-optimal CPAP using different 

standards for each doctor or to estimate effective CPAP 

using AI technology [3]. 

In this study, we intend to evaluate the patient's 

ventilation and blood perfusion under the optimal pressure 

found in the conventional manual CPAP titration study 

using the PSG sensors and high-speed impedance imaging. 

In addition, we would like to observe changes in the 

subject's cardiopulmonary status under pressure around 

the optimal pressure. Through this, we aim to provide 

insight that can complement the conventional CPAP 

titration study based on the number of event occurrences. 

2 Methods 

Thirty patients diagnosed with OSA and prescribed CPAP 

(AirSense S10, ResMed, USA) were recruited from the 

Department of Otorhinolaryngology at Kyung Hee 

University Hospital. Consent was obtained from all 

patients participating in the study (IRB No. KHMC-2022-

07-038). An overnight sleep was conducted in the sleep 

laboratory while performing the conventional manual 

CPAP titration study. Next to PSG (Embla S7000, 

Medcare, Iceland) measurements, EpadTM (Bilab, Korea) 

electrodes for impedance imaging were additionally 

attached to the chest, acquiring 100 impedance images per 

second using AirTom (Bilab, Korea). Fig. 1 shows the 

sensors and electrodes measured by PSG and AirTom 

during the CPAP titration study. After removing the 

motion artifact from the measured data [4], respiratory-

related and cardiac-related signals were separated using 

the source consistency algorithm. We calculated the 

averages of tidal volume (TV), minute ventilation (MV), 

stroke volume (SV), cardiac output (CO), and ventilation-

perfusion (V/Q) ratio for each pressure level on the CPAP 

device using EIT images. Additionally, we computed the 

standard deviation of the regional ventilation delay 

(sdRVD), which presents the difference in the time it takes 

for air to fill the lungs from the images. As shown in Fig. 

2, at the optimal pressure from conventional CPAP 

titration study, we observed an increase in MV and a 

decrease in CO, resulting in an elevated V/Q ratio, and 

noted the greatest reduction in sdRVD. 

   
Figure 1: Experimental setup: A full-night CPAP titration study 

with simultaneous measurements of PSG and impedance images. 

 
Figure 2: An example of changes in (a) MV, (b) CO, (c) sdRVD, 

and (d) V/Q ratio when increasing the pressure of the CPAP 

device from 6 to 9 cmH2O. 

3 Conclusions 

Analyzing these physiological responses aims to provide 

valuable insights into adjusting CPAP settings to enhance 

treatment efficacy and patient comfort. 
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Abstract: A cross-frequency spatial information fusion 
network (CFSF-Net) imaging method based on multi-path 
structure is proposed to improve the spatial resolution of 
the time difference EIT (tdEIT), and the effectiveness and 
stability of the algorithm are verified by simulation 
experiments under different noise levels.   

1 Introduction 

Electrical impedance tomography (EIT) images the inside 
of the measured body based on the impedance 
characteristics of biological tissues, which shows an 
excellent application prospect in many fields such as lung 
function monitoring, breast cancer screening and stroke 
detection [1]. However, as a nonlinear and ill-posed 
imaging technology, the spatial resolution of EIT still 
needs to be further improved [2]. We propose a cross-
frequency spatial information fusion network (CFSF-Net) 
method, the cross-frequency spatial information between 
time difference conductivity images at multiple 
frequencies is extracted through multi-path structure in 
this method to achieve higher quality tdEIT imaging. 

2 Methods 

 
Figure 1: Framework of the CFSF-Net imaging method. 
The framework of the CFSF-Net method includes two 
main parts: data generation and network training.  
 
First, the voltage data at multiple frequencies were 
generated using a simulation model with 16 Ag/AgCl 
electrodes was built in COMSOL. Using the conventional 
tdEIT imaging algorithm [3], we then acquired initial 
images of conductivity distribution as this dataset for deep 
learning network training.  
The structure of the CFSF-Net is detailed in Fig. 2. In the 
initialization module, voltage data are transformed into 
corresponding conductivity distribution images using the 
imaging algorithm. The cross-frequency information 
extracting module receives these conductivity distribution 
images, which represents spatial information at various 
frequencies, and uses them to extract the spatial-related 
information between the advanced features of the images. 
Finally, the extracted features are merged and up-sampled 
in the information fusion module to generate the 
predictive tdEIT image. 

 
Figure 2: Detailed structure of CFSF-Net, which is 
mainly composed of a traditional time difference imaging 
module, a cross-frequency information extraction module 
and an information fusion module. 

2.1 Results 

 
Figure 3: Reconstruction results under test data of 
different noise levels (80–20 dB). 
Fig. 3 reveals that the CFSF-Net imaging algorithm 
performs exceptionally well on test data across 
conventional noise levels, ranging from 80 to 40 dB, and 
accurately reconstructs target sizes and shapes, although 
the targets shape is deformed under 20 dB strong noise. 

3 Conclusions 

In this study, the imaging quality of tdEIT was improved 
by combining the spatial information between 
conductivity images at different frequencies, and the 
effectiveness of the algorithm was verified by simulation 
experiments. In the future, the method can be extended to 
imaging fields such as magnetic induction tomography.  
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Abstract: Reciprocity accuracy indicates the consistency
of corresponding reciprocal pairs. Evaluating this accuracy
typically requires the measurement pattern and stimulation
pattern to be interchangeable. In this work, we propose
a novel pattern-insensitive method offering system-level
channel consistency assessment without this constraint.

1 Introduction
Reciprocity accuracy[1] compares the measurements of
corresponding reciprocal pairs. To measure the voltage
of a corresponding reciprocal pair, the EIT system must
be designed with the ability to swap the pattern of stim-
ulation and measurement. For example, evaluating a
system with "opposite-stimulation-adjacent-measurement"
pattern requires the additional implementation of "adjacent-
stimulation-opposite-measurement" capability. While some
methods[2] assess channel consistency through visual anal-
ysis of images, this work proposes a novel pattern-
insensitive metric method for quantitative evaluation. This
method eliminates the dependence on specific patterns, en-
abling system-level channel consistency assessment for any
EIT system configuration.

2 Methods
A circular circuit layout on PCB is essential for this method.
Figure 1(Left) illustrates a PCB design for a 16-electrode
system. In this design, the resistances between adjacent
electrode pairs are identical.

Figure 1: Left: PCB for 16-electrode EIT system. Middle: Equiv-
alent channels of the 1st measurement channel during the proceed-
ing of 1-9 stimulation.Right:4 additional equivalent channels

Consider a 16-electrode system with opposite-stimulation-
adjacent-measurement pattern, specifying a stimulation pair
and a measurement pair designates a channel. When the
stimulation pair remains unchanged, three additional chan-
nels with matching voltage amplitude can be identified for
this channel, as illustrated in Figure 1 (Middle). These
channels are typically situated at symmetric positions. Due
to the continuous symmetry of circular circuits, changing
the stimulation pair should result in 4 additional channels
at corresponding relative positions showing the same am-
plitude, as illustrated in Figure 1 (Right). Thus, iterating
over 16 stimulation pairs reveals 16 * 4 equivalent chan-
nels sharing identical voltage amplitude, which are com-
bined into an equivalent group for the specified channel.
The reference voltage of a channel is obtained by averag-
ing the voltages of all channels in its corresponding equiv-

alent group. This process requires stimulating all available
electrode pairs and measuring the voltages at the same rela-
tive positions. Consequently, this reference voltage demon-
strates a statistical characteristic of the channels at system-
level. By comparing the channel voltage with its corre-
sponding reference voltage, we can assess the system-level
channel consistency, as shown in equation (1).

ci = 1−
| |vi| −mean(|v̂equivalent_group(i)|) |

mean(|v̂equivalent_group(i)|)
(1)

ci denotes the consistency of channel i, where i ∈
all_channels, vi denotes the measurement voltage of chan-
nel i, v̂equivalent_group(i) denotes the measurement volt-
ages of all channels in the equivalent group of channel i.

3 Results
We constructed two EIT systems with different circuits and
calculated their channel consistency described in the previ-
ous section. The results are shown in Figure 2. The x-axis
represents the channel number, and the y-axis represents the
channel consistency calculated using equation (1). Higher
channel consistency indicates that the corresponding chan-
nel have stronger statistical resemblance with other equiva-
lent channels. Based on the results, we can select the sys-
tem that exhibits more uniform current distribution across
its circuits .

Figure 2: Channel consistency analysis reveals better circuit bal-
ance in system 2 compared to system 1.

4 Conclusions
In this paper, we propose a novel channel consis-
tency metric method and detail its application to a 16-
electrode EIT system with opposite-stimulation-adjacent-
measurement pattern. Furthermore, by utilizing the inher-
ent symmetry of circular circuits, we can extend the appli-
cability of this method to systems with diverse electrode
numbers and stimulation-measurement patterns.
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Abstract: The accuracy and stability of data detection in 

MIT (Magnetic Impedance Tomography) systems are key 

indicators of system performance. This study achieves a 

system detection signal-to-noise ratio of over 70dB and a 

relative drift of 0.08% per hour by adopting digital direct 

sampling of orthogonal sequences for phase detection. 

1 Introduction 

Magnetic Induction Tomography (MIT) reconstructs 

images of the intracranial impedance distribution by 

detecting the eddy current phase values of targets obtained 

through coils without contact with the human body. The 

eddy current signal is very weak and superimposes with the 

excitation signal. Therefore, the MIT phase identification 

system requires a high signal-to-noise ratio and low phase 

drift to reconstruct the correct impedance distribution. 

2    Methods 

Because the phase signal of MIT is directly proportional to 

the frequency difference of the excitation, a higher 

frequency excitation signal is chosen to obtain better 

detection signals. At the same time, to achieve a better 

dynamic range, a higher bit depth for the AD conversion is 

required. Combining these two factors places high demands 

on the AD chip. The usual method [1] involves down-

converting the frequency before AD sampling, such as 

using a superheterodyne down-conversion scheme. 

The key component in this process is the mixer used 

for down-conversion. The nonlinearity and temperature 

drift characteristics of analog mixers limit the overall 

improvement in measurement accuracy. Considering that 

the system's demodulation signal is a single-frequency 

signal, we adopt a digital direct sampling down-conversion 

scheme, as shown in Fig. 1. According to the Nyquist 

sampling theorem, this method can also obtain the complete 

information of the original signal. Digital down-conversion 

effectively reduces the nonlinearities, temperature drift, and 

noise introduced by analog mixing/down-conversion, 

thereby achieving the goal of low noise and low 

temperature drift. 

 

Excitation
Signal

Power 
Amplification

Multiplex 
Coil

f Hz
excitation channel

Measuring channel

Local
signal

Power 
Amplification

F-10k Hz 10k Hz
AD

 
Fig. 1. Digital direct sampling quadrature sequence phase 

detector circuit 
 

The signal source employs Direct Digital Synthesis 

(DDS) technology to generate an excitation sinusoidal 

waveform, with the capability to vary the frequency within 

the range of 15 MHz to 30 MHz The DDS chip used is the 

AD9958, which features a built-in dual-channel 10-bit 

DAC, capable of generating two 500 MSPS signals, with a 

32-bit frequency control word. In application, one output is 

used as the excitation signal source, and the other output 

serves as the clock signal for AD sampling, as shown in Fig. 

2. 
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Fig. 2. Excitation signal and AD timing control schematic 

diagram 
Based on this, we developed a system, Utron MH-200, 

which operates within a frequency range of 15 MHz to 35 

MHz, with a step size of 1 MHz. The system's overall 

signal-to-noise ratio reaches 70dB, and the long-term phase 

drift is less than 0.08%, as shown in Fig. 3. This 

performance surpasses that reported in the literature, such 

as 13.56 MHz: 60dB, 0.16% [1], 20 MHz: 64.96dB, 0.33%, 

and 27 MHz: 60.12dB, 0.54% [2]. 

 
Fig. 3. Digital direct sampling system for measuring signal-

to-noise ratio and drift 

3    Conclusions 

The method above demonstrates that within the MIT 

system, digital direct sampling of orthogonal sequences for 

phase detection achieves a higher detection signal-to-noise 

ratio and lower relative drift compared to superheterodyne 

phase detection. 
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Abstract: A simple 3D brain EIT data acquisition system 

with 20 channels is developed based on the STM32 

microcontroller. This new hardware has very simple 

materials and control logic, and it takes very little time to 

set up (two hours is enough). The results of the tank 

experiment show that the system can accurately identify 

and locate the target. 

1 Introduction 

The human brain is a volumetric conductor with a three-

dimensional structure, and the injected current flows in all 

directions simultaneously. However, 2D brain EIT lose the 

conduction information outside the measurement plane. To 

address the limitation of two-dimensional imaging in 

locating the depth of targets and expand the application 

scope of brain EIT, it is necessary to establish a 3D brain 

EIT imaging platform. 

2 Methods 

The core of the data acquisition system is the 

STM32F103C8T6 microcontroller powered by 3.3V. The 

IO ports are connected to a multiplexers to select the 

excitation and measurement channels. The AD module 

converts analog signals to digital voltage. The serial module 

receives data and sends it to the host computer. The system 

workflow is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: System working principle. 

 

In COMSOL, a head-shaped tank model is designed with 

electrode layout referencing the EEG 10-5 system, placing 

a total of 20 copper electrodes with a diameter of 1cm, some 

of which are located at the occipital and central vertex 

regions to improve vertical resolution. Mainly driven by 

electrodes with large spacing at different heights to reduce 

scalp shunting effects, allowing more effective current to 

penetrate the skull and enter brain tissue [1]. Voltage is 

collected in a spiral manner from adjacent channels. 

3D images are reconstructed using the GREIT algorithm 

[2]. The inverse model contains 23K elements. 

3 Results 

The operation of the entire system is shown in Figure 2. 

Saturated calcium sulfate solution (0.25 S/m, similar to 

brain tissue) serves as the background. Imaging of 

perturbation targets at 6 different positions (agar, 0.7 S/m, 

Simulated blood inclusion) is conducted, and the images 

are displayed as a 3D model containing the targets, as 

shown in Figure 3. The results indicate that the system can 

effectively identify and locate the targets. 

 

 

 

 

 

Figure 2: 3D brain EIT data acquisition system. 

 

 

 

 

 

Figure 3: Imaging results (The targets are distributed 

at the top, front, back, center, left, and right). 

4 Conclusions 

The brain EIT signal acquisition system with 20 electrode 

configurations developed based on microcontroller 

successfully obtained useful data in Simulated head-shaped 

tank experiments, achieving 3D imaging of targets. The 

ongoing work involves constructing a deep learning model 

to further enhance imaging speed and resolution. 
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Abstract: In intracranial pathologic conditions of 

intracranial pressure (ICP) disturbance or hemodynamic 

instability, maintaining appropriate ICP may reduce the risk 

of ischemic brain injury. As a non-invasive functional 

imaging technique, the sensitivity of electrical impedance 

tomography (EIT) to cerebral hemodynamic changes has 

been preliminarily confirmed. However, no team has 

conducted a feasibility study on the dynamic detection of 

ICP by EIT technology from the perspective of non-

invasive whole-brain blood perfusion monitoring. In this 

study, human brain EIT image sequence was obtained by in 

vivo measurement, from which a variety of indicators that 

can reflect the tidal changes of the whole brain impedance 

were extracted, in order to establish a new method for non-

invasive monitoring of ICP changes from the level of 

cerebral blood perfusion monitoring. 

1 Introduction 

Intracranial pressure (ICP) monitoring is an indispensable 

part of clinical care for many life-threatening brain injuries 

such as intracerebral hemorrhage, subarachnoid 

hemorrhage and malignant stroke [1]. Based on the 

previous research [2] on brain electrical impedance 

tomography (EIT) measurement technology and imaging 

algorithm of our team, in this study, we focused on the 

monitoring of cerebral blood perfusion status during 

Valsalva maneuver (VM) intervention [3]. In order to 

explore the rule of ICP status and acute changes of 

intracranial perfusion through perfusion monitoring index 

extracted by impedance blood flow signal and 

reconstructed image non-invasively. 

2 Methods 

2.1 Data collection 

The jointly developed EIT system (EC-100 PRO) uses a 

disposable EIT electrode tape (EH-PET-16-CS, UTRON 

Technology Co., Ltd., Hangzhou, China) with 16 electrodes 

attached to the subject's head. At the same time, the medical 

elastic bandage was tightly wrapped around the electrode to 

temporarily block the influence of scalp blood flow while 

assisting in fixing the electrode. Data were collected from 

the resting period of the subjects (9 males and 3 females, 

age 27.50 ± 3.34), and photoplethysmography (PPG) 

signals of the subjects' fingers were recorded synchronously 

during the collection, which was used as a reference for 

heart activity during the experiment. The overall 

experimental process is shown in Figure 1. 

  
Figure 2: Experimental environment. 

2.2 Data analysis 

Pulse Delay Time (PDT) was calculated by equation (1) 

 𝑃𝐷𝑇 = 𝑀𝑃𝑃𝐺 −𝑀𝐸𝐼𝑇 (1) 

MPPG (MEIT) is the moment when the changing rate of the 

ascending branch of PPG (EIT) signal is the largest in each 

perfusion cycle. The unit of PDT is ms. The mean value of 

PDT was calculated with ten perfusion cycles. 

3 Conclusions 

In the stable phase of baseline period (BP), intervention 

period (IP), and recover period (RP), it can be seen that the 

value of IP was greater than that of other period (Figure 2). 

Figure 2: Result of statistical analysis of EIT cerebral blood 

perfusion monitoring index 

This study used EIT to reflect the changes of cerebral blood 

perfusion under VM intervention, which provided a new 

idea for ICP monitoring. The result showed that EIT 

reconstructed images visually demonstrated the changes of 

intracranial blood perfusion status during the rise of ICP, 

and the perfusion monitoring indexes extracted from the 

reconstructed images could sensitively describe the 

differences of cerebral blood perfusion status under 

different ICP environments. 
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Abstract: Intracranial pressure(ICP) monitoring is of 

great significance in guiding the diagnosis, treatment and 

efficacy evaluation of nervous system diseases. In this 

study, the feasibility of electrical impedance tomography 

(EIT)as a noninvasive ICP monitoring technique was 

evaluated by comparing the dynamic blood perfusion 

parameters extracted from EIT images with ICP. 

1 Introduction 

Increased ICP is an important cause of secondary brain 

injury, and ICP monitoring has become an important part 

of brain monitoring after traumatic brain injury[1]. At 

present, the invasive ICP monitoring commonly used in 

clinical practice has high accuracy, but it is prone to com-

plications such as infection, hemorrhage, and neurological 

deficit[2]. Electrical impedance tomography (EIT) is a 

method that can present cross-sectional images of the 

electrical properties of the brain. Increased ICP affects 

blood volume changes in cerebral vessels[3], and changes 

in blood volume cause changes in impedance[4]. There-

fore, EIT is expected to be used in ICP monitoring to 

improve the early identification of secondary brain injury 

and observe the effect of therapeutic intervention. In this 

study, we focused on the correlation between EIT and ICP 

to lay the foundation for the use of EIT in ICP monitoring. 

2 Methods 

In a study involving six domestic pigs under general anes-

thesia, we periodically injected arterial blood into their 

brains to to induce intracranial pressure changes.The pro-

cedure was as follows: 2 ml of blood was infused every 10 

min for a total of five sessions Fig.1.EIT using EC-100 

PRO (UTRON Technology Co., Ltd., Hangzhou, China) 

was monitored synchronously with ICP throughout the 

procedure. Invasive intracranial pressure monitoring was 

used to verify whether intracranial pressure had changed. 

The perfusion parameters were extracted from the global 

region of EIT images, and the correlation between the 

perfusion parameters after blood injection and ICP values 

was analysed. The perfusion parameters are shown in Fig2.  

 
Figure 1: Timeline of experimental progress. S0: baseline period; 

Si(i=1,2,3,4,5): the i-th blood transfusion. 

 
Figure 2: A perfusion cycle waveform map was obtained from 

the EIT image sequence. Hs: the amplitude of the ascending 

branch; Arb: angle between the ascending branch and the base-

line; IV: the volume of blood circulating in an artery per unit of 

time (
𝐻𝑠

𝑇⁄ ); S: the area of the region enclosed by the perfusion 

waveform and baseline. 

3 Results & Discussion 

The perfusion parameters extracted from EIT images were 

significantly negatively correlated with intracranial pres-

sure (Table 1, P<0.001).It can be seen from the results that 

the correlation varies greatly in each period. The main 

reason is that EIT reflects the ICP level by monitoring the 

changes of hemodynamics and blood flow physiological 

parameters of intracranial vessels. The correlation between 

perfusion parameters and ICP is low due to the cerebral 

autoregulation(CA) when the amount of bleeding is small. 

When the bleeding reaches a certain degree, the CA can-

not regulate the stability of cerebral blood flow, and the 

correlation becomes stronger. 

4 Conclusion 

In this study, we constructed an animal model of intracra-

nial hypertension to demonstrate the significant correla-

tion between EIT and ICP. The results suggest that EIT 

may be a promising method for non-invasive ICP monitor-

ing.  
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Table 1: Mean correlation between EIT parameters and ICP in different periods. 

Parameter 
Period 

S1 S2 S3 S4 S5 

S -0.12±0.34 -0.58±0.35 -0.80±0.10 -0.88±0.06 -0.92±0.01 

Hs -0.19±0.34 -0.65±0.24 -0.69±0.12 -0.88±0.04 -0.91±0.01 

IV -0.14±0.16 -0.58±0.17 -0.53±0.29 -0.81±0.13 -0.86±0.05 

Arb 0.16±0.40 -0.21±0.53 -0.56±0.43 -0.91±0.03 -0.85±0.01 
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Abstract: The study aimed to compare regional lung 

ventilation, lung perfusion and ventilation/perfusion (V/Q) 

matching in different body positions using electrical 

impedance tomography (EIT). The results found regional 

alternatives in the distributions of lung ventilation and 

lung perfusion, which reveals the sensitivity and 

instantaneity of EIT in lung functional imaging. 

1 Introduction 

Body position changes can alter pulmonary ventilation by 

affecting lung volume and diaphragm position, as well as 

the dilation and elasticity of pulmonary vessels, thereby 

altering the distribution of pulmonary artery and venous 

blood flow [1]. Different postures may cause a mismatch 

in the ventilation/perfusion (V/Q) ratio, affecting gas 

exchange and blood oxygen saturation. As a result, it is 

important to investigate the role of body position in 

understanding the physiological and pathological 

processes of pulmonary gas exchange.  

EIT can effectively depict the physiological process of 

gas volume changes of breathing and blood passing 

through the pulmonary circulation. Saline contrasted EIT 

method evaluates pulmonary perfusion by measuring the 

degree of impedance decrease caused by saline indicator 

transferring through the pulmonary circulation, which 

reflects real-time changes in pulmonary blood perfusion 

[2]. Currently, most studies on changes in posture of EIT 

bedside monitoring focus on pulmonary ventilation, with 

few reports on changes in pulmonary perfusion and V/Q 

match. In view of this, our study observed healthy piglets 

under mechanical ventilation as experimental subjects and 

mainly focused on investigating the distribution and V/Q 

match changes of pulmonary perfusion using saline 

contrasted EIT in four different body positions: supine, 

prone, lateral right, and lateral left. 

2 Methods 

Ten pigs (35-45 kg) were anaesthetised and mechanically 

ventilated. Body position changes were made in a 

sequential order, 30 minutes each: Supine; Lateral Right 

(right lung positioned up); Prone; Lateral Left (left lung 

positioned up). At the end of each step (15 minutes), EIT 

measurement was acquired. Relative lung perfusion was 

assessed with EIT and central venous injection of 5% 

saline (10 ml) during breath holds. The EIT reconstruction 

was done in EIDORS using GREIT algorithm [3]. 

2.1 Data processing and image reconstruction 

Ventilation images were created from a 1-minute 

recording of continuous mechanical ventilation. The time 

domain difference in impedance between the end of 

expiration and the end of inspiration was calculated and 

averaged. 

The perfusion image was created by capturing the 

movement of a bolus through the lungs during a breath 

hold. Relative perfusion was calculated using the max 

slope of regional impedance-time curves.  

The VQ match parameters was calculated by identifying 

three regions: regions that were only ventilated (RV), 

regions that were only perfused (RP) and regions both 

ventilated and perfused (RV+P). 
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+
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2.2 Imaging result of different body positions  

 
Figure 1: Imaging result of different body positions. 

3 Conclusions 

In this research, we evaluated the regional distribution of 

ventilation and blood flow of healthy piglets in four 

different body positions through EIT. The results showed 

that changes in measurement position can lead to changes 

in the lung's gravity-dependent zone, which in turn affects 

the distribution of regional lung ventilation and lung 

perfusion. EIT can sensitively image alterations in lung 

ventilation and lung perfusion caused by changes in body 

position. 
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Abstract: In order to reduce the effect of noise on EIT 
reconstructed images to improve the image quality, we 
propose a multiscale residual convolutional neural 
network (MS-1DResCNN) for post-processing of EIT data 
by exploiting the correlation between multi-frame 
conductivity data, and experimentally validate the 
algorithmic performance of this model under the condition 
of 30 dB noise interference.  

1 Introduction 
The effectiveness of electrical impedance tomography 
(EIT) for monitoring pathological changes in human brain 
tissue, lung function imaging, and other medical fields has 
been well documented [1]. Dynamic measurements of EIT 
voltage signals are susceptible to noise, vibration, and 
other disturbances. Due to the pathological and unsuitable 
nature of the reconstruction of the EIT inverse problem, 
these interferences can lead to a large number of artifacts 
in the reconstructed image, which reduces the quality of 
the reconstruction [2]. Researchers usually use some 
regularization methods to improve the stability and 
accuracy of the solution, these methods can reduce the 
impact of noise on the inverse problem solving to a certain 
extent, but due to its non-analogue and non-linear 
characteristics, how to effectively inhibit the impact of 
noise on the reconstruction of the EIT image to improve 
the stability of the algorithm is still a key issue in the 
current research, with the development of deep learning 
methods, which provides a new way of thinking and 
solutions for the further development of EIT. 

2 Methods 
In this study, we combine the EIT inverse problem with 
convolutional neural network [3] to propose a multi-scale 
convolutional neural network-based post-processing 
method that performs feature fusion and noise artifact 
suppression on multi-frame sequentially initialized 
conductivity data obtained by the traditional EIT 
reconstruction algorithm, so as to obtain a higher quality 
reconstructed image of the distribution of conductivity 
change of a disturbed target and improve the robustness of 
the traditional DLS algorithm.  

 
Figure 1:   MS-1DResCNN network architecture 

The DLS [4] algorithm is used to pre-establish five 
consecutive frames of conductivity distribution data, and 
then extract the feature information of multi-frame EIT 
conductivity distribution and the target position 
information related to the finite element veto partitions 
through the network, to distinguish the target and artifacts 
from the reconstructed image, and then remove the 
artifacts in the reconstructed image after the network 
processing, to restore the accurate target information. 

2.1 Result 

 
Figure 2:   Reconstruction results and metrics calculations at 30 
dB noise 

We conducted experiments with different target locations 
under 30 dB noise, and the results, as shown in Fig. 2, 
show that there are no artifacts in the reconstructed images 
and the target locations are clear and unambiguous in the 
MS-1DResCNN method of this study. According to the 
structural similarity index (SSIM) is improved by 23.89% 
and 9.77%, respectively, and the normalized mean square 
error (NMSE) index value is reduced by 77.69% and 
63.27%, respectively. 

3 Conclusions 
The deep learning model proposed in this paper is able to 
exploit the real-time nature of dynamic EIT to fuse the 
target feature information in multi-frame conductivity 
distribution data, reduce the interference artifacts in the 
images, and provide higher quality reconstructed images 
for EIT in subsequent real-time monitoring studies. 

References 
[1] Feng Fu, Bing Li, Meng Dai. et al., PLoS ONE, vol. 9, no. 12, p. 

e113202, 2014. 
[2] Weirui Zhang, Tao Zhang, Xuechao Liu. et al., IEEE Access, vol. 9, 

pp. 141999–142011, 2021. 
[3] Le Wu, Aiping Liu, Xu Zhang, et al, IEEE Trans. Instrum. Meas., 

vol. 71, pp. 1–10, 2022. 
[4] Xuechao Liu, Tao Zhang, Jian’an Ye. et al., Sens., vol. 22, no. 24, p. 

9934, Dec. 2022. 

 

36



Research on the Relationship between Blood Dielectric Parameters 

and Blood Gas Indicators 

Wang Weice1, Li Weichen2, Wang Yu3, Zhu Mingxu1, Jin Zhenxiao5 and Shi Xuetao1,2 
1Department of Biomedical Engineering, Air Force Medical University, Xi’an, China 

2School of Life Sciences, Northwest University, Xi'an 710127, China 
3Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao, China 

4Xijing Hospital, Xi’an, China 

Abstract: The blood dielectric parameters are 

significantly influenced by their composition. This paper 

systematically studied the correlation between the blood 

dielectric parameters and various blood gas indicators of 

patients undergoing extracorporeal circulation surgery, 

and used stepwise regression method to screen key 

indicators for predicting the dielectric parameters.  

1 Introduction 

Blood is a key tissue that spreads throughout the body, and 

its dielectric parameters are significantly influenced by 

various factors such as frequency and composition. The 

significant changes in blood dielectric parameters can 

have an impact on the monitoring of blood flow perfusion 

in important organs by EIT, leading to the inability to 

accurately monitor and warn of the occurrence of 

reperfusion and hypoperfusion, which affects the 

application of EIT in areas such as cerebral blood flow 

perfusion monitoring [1] and pulmonary perfusion 

abnormalities in respiratory diseases [2]. At the same time, 

when using chest impedance method to monitor the stroke 

output and cardiac output of patients with circulatory 

disorders, accurate values of blood resistivity are required 

[3]. Furthermore, studying the relationship between blood 

dielectric parameters and composition can provide a 

deeper understanding of the changes in physical properties 

caused by physiological and chemical changes in 

biological tissues, build a bridge between biochemical and 

physical properties, and provide researchers with more 

parameter indicators. Therefore, it is necessary to study 

the variation of blood dielectric parameters with their 

composition at various frequencies. 

2 Methods 

This study was approved by the Medical Ethics 

Committee of Xijing Hospital. Intraoperative blood was 

collected from patients undergoing extracorporeal 

circulation surgery, and 10Hz-100MHz dielectric 

parameter measurements and blood gas analysis were 

performed at 37 ℃ . The real and imaginary parts of 

electrical resistivity were calculated [4]. Shapiro-Wilk 

normality tests were performed on the real and imaginary 

parts and various blood gas indicators at each frequency 

point. Based on this, Spearman correlation analysis was 

performed on the dielectric parameters and blood gas 

indicators. Screening for blood gas indicators that have a 

significant impact on blood dielectric parameters. At the 

same time, in order to use blood gas indicators to predict 

dielectric parameters, a stepwise regression method was 

used to establish an empirical formula between dielectric 

parameters and blood gas indicators, and a residual PP 

plot was drawn to prove that the regression residuals 

follow a normal distribution. A residual scatter plot was 

drawn to demonstrate the absence of heteroscedasticity. 

Finally, a prediction model was established. 

3 Results 

We analyzed the correlation between the real and 

imaginary parts of electrical resistivity and blood gas 

indicators. As shown in Figure 1, the thermal maps of the 

real part at 10, 100, 1k, 50k, 100k, 1M, 10M, and 100MHz 

can be obtained, and some blood gas indicators 

significantly correlated with dielectric parameters can be 

obtained.

 
Figure 1: Pearson correlation heatmap between the real part 

of electrical resistivity and blood gas indicators. 

At the same time, we conducted stepwise regression analysis 

on the real and imaginary parts of resistivity at various 

frequencies and established prediction models, such as the 

stepwise regression analysis model for the real part of resistivity 

at 50kHz: Real(50kHz)=126.281 + 0.573*XPaCO2-0.905*YNa+ 

3.016*ZHct, with a determination coefficient of 0.879. 

4 Conclusions 

The established model can accurately predict blood 

dielectric parameters by utilizing changes in blood gas 

indicators, and this study determined the degree of 

influence of each component on dielectric parameters. 

References 

[1] Li, Y, Zhang, D, Liu, B, et al. Noninvasive Cerebral Imaging and 

Monitoring Using Electrical Impedance Tomography During Total 

Aortic Arch Replacement. J CARDIOTHOR VASC AN. 2018; 32 
(6): 2469-2476. doi: 10.1053/j.jvca.2018.05.002 

[2] Frerichs, I, Dargaville, PA, Rimensberger, PC. Regional pulmonary 

effects of bronchoalveolar lavage procedure determined by electrical 
impedance tomography. Intensive Care Med Exp. 2019; 7 (1): 11. 

doi: 10.1186/s40635-019-0225-6 

[3] Kubicek, W. G., Karnegis, J. N., Patterson, R. P., Witsoe, D. A., 
Mattson, R. H.: Development and evaluation of an impedance 

cardiac output system. Aerospace Med. 37, 1208 (1966). 

[4] Wang W, Li W, Liu B, et al. Temperature dependence of dielectric 

properties of blood at 10 Hz–100 MHz [J]. Frontiers in Physiology, 

2022: 2300.

 

37



Feasibility Study of Cerebral Perfusion Monitoring during Total 

Aortic Arch Surgery using Cerebral Contrast-enhanced Electrical 

Impedance Tomography 

Wenjing Zhu1,2, Chen Yang3, Yitong Guo2, Jing Ma2, Xiuming Chen4, Zhenxiao Jin3, and Xuetao 

Shi2 
1Northwestern Polytechnical University, Xi’an, China, zhuwenjing@mail.nwpu.edu.cn 

2Fourth Military Medical University, Xi’an, China 
3Xijing Hospital, Xi’an, China  

4Utron Tech Co., Ltd, Hangzhou, China  

 

Abstract: It is crucial to monitor cerebral perfusion in order 

to reduce the incidence of postoperative brain damage after 

total aortic arch replacement (TAAR). In response to the 

characteristics of different periods in TAAR, we selected 

different contrast agents and extracted relevant parameters 

reflecting blood perfusion. The monitoring results of 29 

patients showed that our established cerebral contrast-

enhanced electrical impedance tomography perfusion 

method can monitor cerebral blood flow perfusion during 

TAAR with good signal intensity and image quality. 

1 Introduction 

About 30-50% patients [1] experience brain damage after 

total aortic arch replacement (TAAR). The high risk of 

cerebral malperfusion [2] during the surgery is a major 

factor contributing to postoperative brain damage. 

Monitoring the cerebral perfusion during surgery can 

reduce or minimize the probability of brain damage 

occurrence. The aim of this study was to develop a cerebral 

contrast-enhanced impedance tomography perfusion 

method for monitoring cerebral perfusion during TAAR. 

2 Methods 

29 patients who underwent TAAR at Xijing Hospital during 

2023 were monitored intraoperatively using EC-100 PRO 

(UTRON Technology Co., Ltd., Hangzhou, China). In three 

stages, contrast agent was injected via the arterial port of 

the cardiopulmonary bypass in a bullet-like manner. For 

both cooling and rewarming platform period, a 20ml 

solution of 10%NaCl was used as the contrast agent; while 

for the hypothermic circulatory arrest (HCA) period, a 20ml 

solution of 3%NaCl was used. Before and after injecting the 

contrast agent, blood gas parameters were measured to 

control sodium ion levels within the normal range of 135-

145mmol/L. To reflect the cerebral perfusion, we extracted 

three parameters related to contrast-enhanced imaging: 

time to peak (TP), peak amplitude (PAM), and peak area 

(PAR) (Figure 2). 

2.1 Figures and tables 

Figure 1 showed the monitoring process and the parameter 

extraction method. Figure 2 displayed impedance change 

and cerebral perfusion imaging after an injection of contrast 

agent in a patient during the cooling platform period. 

Table 1 showed the impedance parameter performance after 

contrast injection in different periods. 

 
Figure 1: Perioperative monitoring and parameter extraction.  (a) 

Procedure of surgery and timing of contrast agent injection. (b) 

Scene of intraoperative monitoring. (c) Extraction of parameters 

reflecting blood flow perfusion. 

 

Figure 2:  A contrast-enhanced imaging result of a patient in 

cooling platform period.  

Table 1: Parameters related to contrast-enhanced imaging during 

three different stages of TAAR. 

 cooling HCA rewarming 

TP (s) 31±9 21±8 21±5 

PAM (AU) 360±200 812±420 660±235 

PAR (%) 0.23±0.02 0.5±0.3 0.27±0.01 

3 Conclusions 

In this clinical pilot study, we developed a cerebral contrast-

enhanced impedance tomography perfusion method 

applicable to TAAR. 
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Abstract: An attempt can be made to evaluate the state of 

seizures by impedance changes related to cerebral blood 

perfusion. In this study, seizures were induced by kainic 

acid in rats, and impedance data and PPG signal were 

collected simultaneously using dynamic cerebral blood 

perfusion EIT system and finger pulse oximeter. The 

impedance parameters were calculated to measure the 

impedance changes. 

1 Introduction 

During epileptic seizures, the abnormal discharge of 

neurons in the brain will lead to an increase in energy 

consumption and changes in regional cerebral blood flow 

(rCBF) [1-2]. This CBF response may be regarded as a 

symbol of seizures. Due to the high conductivity of blood 

[3], increased cerebral blood perfusion during seizures 

will cause impedance changes of brain issue, which shows 

that electrical impedance tomography (EIT) has the 

feasibility of detecting seizures. The purpose of this study 

was to determine whether EIT can detect and image the 

dynamic impedance changes caused by cerebral blood 

perfusion during seizures in real time.  

2 Methods 

The 16-electrode ring array was first fixed on the exposed 

skull surface of rats using 16 skull nails, and then the EIT 

system with the acquisition speed of 40 frames/s was 

connected and continuously monitored rats for 6-8h. At 

about 1h of monitoring, rats were administered by 

intraperitoneal injection with 4.2 mg/kg kainic acid (KA) 

at a constant speed. About 2h after administration, the rats 

had behaviors such as hunch-up in back, stiffness in body 

and tail, indicating the rats were in seizures. The finger 

pulse oximeter was simultaneously clipped on the hind 

limbs of rats to collect photoplethysmography (PPG) 

signals.  

After data acquisition, the raw EIT data was filtered 

by a bandpass filter (3-7Hz) to remove the baseline drift 

and respiratory interference to obtain the independent 

impedance changes related to cerebral blood perfusion. 

Then, the EIT images were reconstructed and the average 

resistivity value (ARV) of the entire brain was calculated. 

To measure the impedance changes resulting from 

cerebral blood perfusion, the amplitude of impedance 

change (ΔZ), waveform area (S) and inflow velocity (IV) 

of ARV in each cardiac cycle were calculated. The data 

were presented as the mean ± SD. 

3 Results and Conclusions 

The experiment successfully monitored the dynamic 

impedance changes similar to the cardiac cycle in rats 

(Figure 1).  The blood flow to the brain increases and 

cerebral impedance decreases during cardiac contraction 

and cardiac diastole is the opposite process [4]. This is 

consistent with our results. 

According to the statistics of impedance parameters 

(Table 1), we found that compared with the normal state, 

the impedance changes were larger and faster when the 

rats were in seizure, which may be related to the increased 

energy consumption and cerebral blood flow regulation. In 

addition, there were also differences in impedance change 

between the early and later stage of seizures, which 

suggested that the progress and degree of cerebral neural 

activity may affect the cerebral blood perfusion. 

 
Figure 1: The impedance changes related to cerebral blood 

perfusion in different brain regions and PPG during seizures 

lasting 6s, and the schema of impedance parameters.  

 

The results suggested that impedance changes caused 

by changes in CBF during seizures can be detected and 

imaged by dynamic cerebral blood perfusion EIT and this 

technique will can be a powerful tool for monitoring the 

seizures in the future.  
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Table 1: Statistics of impedance parameters of ARV in 3 rats in normal state, 30min and 2h after the onset of seizures. 

 Normal Seizure 30min Seizure 2h 

 ΔZ S IV ΔZ S IV ΔZ S IV 

No. 1 0.06±0.006 1.01±0.11 0.58±0.06 0.23±0.03 4.05±0.59 2.34±0.33 0.29±0.02 5.35±0.37 2.79±0.20 
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No. 3 0.24±0.008 3.72±0.17 4.11±0.13 0.27±0.03 4.20±0.61 4.76±0.40 0.25±0.02 3.45±0.33 4.70±0.34 
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Abstract: This paper presents the use of robotics in assist-
ing the data acquisition procedure for EIT. Instead of attach-
ing electrodes on the object conventionally, the integrated
robots can re-locate the electrodes to different locations dur-
ing the measurement, which greatly improve the sensing
flexibility. Preliminary simulations illustrate the system’s
feasibility in localizing different non-homogeneous regions
and precisely reconstruct a focused region.

1 Introduction
Among the past decades, Electrical Impedance Tomog-
raphy (EIT) technology has been widely implemented in
many different areas including medical imaging, industrial
process control, and geophysical subsurface exploration [1].
Conventionally, the EIT measurement setup either employs
probes consisting of a set of electrodes in a fixed config-
uration [4], or it involves attaching a series of electrodes
directly onto the object’s surface [3]. A notable limitation
of these approaches includes the long duration required for
attaching electrodes to the object under test (OUT) or the
complexities involved in probe manufacturing. In addition,
the fixed electrodes configuration also constrains the imag-
ing resolution, particularly when EIT is used for inspecting
a relatively big area.

2 Methods
The Robot-Assisted Electrical Impedance Sensing (RAEIS)
system has been developed by the Medical Robotics lab of
the University of Southern Denmark recently [2]. The con-
cept of RAEIS is to mobilize the electrodes which can be
controlled by the robot to different locations on the OUT
during the EIT measurement process. By this means, the
proposed system is able to achieve higher sensing flexibil-
ity and adaptive resolution.

As shown in Fig. 1(A), the RAEIS system, designed
for medical applications showcase, utilizes surgical forceps,
which are commonly employed in electrosurgery, as elec-
trodes. A tripolar sensing configuration is used: one for-
ceps is used for current source injection and another is used
for voltage measurement. Each forceps’ movement is con-
trolled by an individual robot. Through monitoring the
change of impedance, the tissue contact can be detected and
assured. Additionally, a ground electrode is required to be
attached on the object both to complete the circuit and serve
as a reference potential.

During the measurement procedure, a grid of positions
are firstly defined in the region of interest (ROI), for in-
stance, a 4×4 array. Then the data collection requires to
move the current source electrode to each position of the
grid for injecting excitation current, and to control the volt-
age measurement electrode to the other positions for electric

potential measurement.

3 Results
Thanks to the involvement of robots, the data acquisition
procedure can be conducted in different locations and in dif-
ferent scales. Fig. 1(B) illustrates two examples based on
simulation. The setup is based on a 4×4 grid, and involves
two non-homogeneous regions, one with lower conductivity
(blue) and one with higher conductivity (red).

The reconstruction results are shown on the right of the
corresponding simulation setup. When the sensing spans a
larger area, the reconstruction image can identify both non-
homogeneous regions, while their shapes are diffused. Con-
versely, focusing the sensing on a smaller area significantly
improves the accuracy of the reconstructed shape, but the
left upper object is missing. Additionally, the system was
tested on phantom made of pig liver and muscle (Fig. 1(C)).
The reconstruction results Fig. 1(D) can indicate the non-
homogeneous correctly.

Figure 1: (A) The RAEIS system using two robots to control two
electrodes to different positions on the OUT for injecting current
excitation and measuring electric voltage during EIT data acquisi-
tion; (B) Two simulation examples showcasing the results in dif-
ferent grid settings.

4 Conclusions
This abstract provides a brief overview of the developing
RAEIS technology in EIT application. The involvement of
robotics enhances the flexibility of data acquisition in EIT,
enabling assessments across various locations and scales.
The preliminary results based on simulation indicate the
system feasibility and its potential in an adaptive EIT sens-
ing strategy. In the conference, more technical details and
quantitative results will be provided.
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Abstract: Although the effects of posture have 

extensively been studied in chest Electrical Impedance 

Tomography (EIT) little is known about the effects of arm 

position except in the sitting posture. We present the study 

protocol and the first results of a clinical investigation 

studying the effects of arm position in sitting and supine 

postures.  The primary goal is to assess if guidance 

concerning clothing that would reduce electrical contact 

between arms and thorax is needed. 

1 Introduction 

Literature has shown arm position can have significant 

impact on some EIT parameters, in particular the End-

Expiratory Lung Impedance (EELI) [1]. We have set up 

an experimental study on healthy volunteers (n=3) to 

replicate the findings in sitting position (typical in 

Pulmonary Function Testing) and explore the effect in 

supine position (typical in ICU setting). The study 

protocol has been adjusted to investigate if the observed 

impact in [1] is caused mainly by the electrical contact 

between the chest and the arm or by the motion of the arm 

itself that would cause physiological changes in 

ventilation distribution in the thorax. 

2 Methods 

The volunteers do not wear clothing covering chest: this 

ensures that electrical currents can flow from the chest to 

the arm in the absence of an electrically insulating sheet. 

The volunteers are asked in each position (sitting and 

supine) to take 5 consecutive stable breaths in the 

following scenario (shown in Figure 1): 

A) Arm along chest, insulating “barrier” 

B) Arm along chest, insulating sheet removed 

C) Arm at 45° from chest 

D) Arm at 90° from chest 

  

  
Figure 1: Experimental protocol: A) insulating sheet between 

arm and chest B) arm electrically contacting chest C) arm lifted 

at 45° D) arm lifted at 90°.   

Figure 1 is shown to volunteers prior to experiment as 

guidance. At each step, after the five consecutive breaths, 

the volunteer marks a short breath hold for breath 

selection in data analysis. An assistant removes the 

insulating sheet between A) and B) so the volunteer can 

remain still.  

For each breath selected, we compute the EELI and EILI 

images. Then, using left ROI and right ROI corresponding 

to Sentec quadrants corresponding to the model used for 

image reconstruction, we compute the regional EELI/EILI 

by summing over all pixels in either the left or right ROI 

of the chest: 𝐸𝐸𝐿𝐼𝑙𝑒𝑓𝑡and 𝐸𝐸𝐿𝐼𝑟𝑖𝑔ℎ𝑡 . 

From the 5 breaths in each sequence, we compute the 

mean and standard deviation. Finally, we express all lung 

impedance values relative to the EELI in reference 

scenario A. The results are shown in Figure 2. 

 

Figure 2: Regional EELI/EILI (ROI corresponding to arm 

lifted), normalised to EELI value in scenario A.   

3 Conclusions 

The regional increase of EELI in the region corresponding 

to elevated arm observed in [1] was confirmed. We found 

that the electrical contact between arm and chest reduce 

the EELI, in a small magnitude. The changes in EELI 

observed even in the case of 90° arm elevation were found 

smaller than the average breath Tidal Variation (EILI-

EELI) 
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Abstract: We show first EIT images of breathing in dol-

phins. Several technical solutions are described to per-

mit EIT imaging in water. Early results show interesting

changes in air distribution with breathing.

1 Introduction

Diving mammals seek to maximize time underwater but

must eventually surface to exchange metabolic gasses. We

want to understand the respiratory and cardiovascular adap-

tations to diving in marine mammals, and then compare to

human breath-hold divers, and how factors affect diving ca-

pacity [2]. Here we report on the feasibility of EIT studies

of lung function and mechanics in diving dolphins.

2 Methods and Results

EIT data were collected with the Sentec pioneer set, using a

custom neoprene belt with conductive polymers electrodes.

Tests of the first prototype belt showed the conductivity of

the water to be an issue, since electricity will preferentially

flow through the water (σseawater ≈ 5S/m), rather than the

body (σ = 0.1–0.7S/m) [1]. This issue was solved with the

design of a belt/vest system which covers and insulates the

electrodes from the water.

Using our EIT belt, EIT data were collected from dol-

phins in several orientations. Our goal was to evaluate the

feasibility of our test configuration and the equipment de-

veloped.

V

D

A
B
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E

F

0                5               10              15              20              25              30    (s)

Figure 1: Sample EIT images and waveforms from (A) dolphin

oriented vertically in the water. (B) Global EIT signal for a 30 s

data window. C & D: EIT images during breath (C) and apnea

(D). Conductivity changes (+=red, –=blue). (E) EIT waveforms

for ROIs (Ventral to Dorsal) indicated in (F)

Data from a dolphin holding its position vertically in a

pool is shown in Fig 1. In the bottom panel, regions of inter-

est are shown. Detailed images are shown for two 1.5 s in-

tervals in the data. The first shows a breath (expiration then

inspiration in the dolphin) and the second shows a heart beat

and the EIT-associated pulsatility.

After the breath, the dolphin maintains the vertical pos-

ture without breathing, and sequential segments of these

data are shown as images. In this configuration, the dol-

phin is making muscular efforts to maintain itself in posi-

tion in the water, and a 140 cycles/minute signal is shown

in the dorsal region of the image, which may be musclular

activity to move the tail.

In Fig 2, we show a detail of a breath in a dolphin posi-

tioned horizontally: waveforms at regions of interest show

the different time courses. In the six central ROIs, there

is a progressive expiratory delay. Expiration starts in the

ventral lung and moves dorsally. Interestingly, inspiration

shows little delay. This effect is similar to expiratory flow

limitation in humans, especially at high flows and in lung

disease (asthma). The lateral regions of the image show an

increase in air content. This could be due to a pendelluft-

type effect, or due to abdominal gas pushed into the image

plane by the diaphragm.

2 4 6 8    (s)

A B

C

Dorsal

Ventral

Figure 2: Sample EIT images and waveforms from a dolphin ori-

ented horizontally, (A) color-coded points corresponding to wave-

forms. (B) EIT signals vs time (s) during a breath and the global

signal (black). Waveforms are normalized to the same maximum

value. (C) EIT images corresponding to vertical lines in (B). Note

the phases during expiration, where dorsal regions respond 0.5–

1.0s later than ventral regions. Much less phase difference occurs

during inspiration. The red indicates decreased air in the central

region, with some blue (air) lateral spaces.

3 Discussion

Results demonstrate the feasibility of EIT-based monitor-

ing in dolphins. In the very short and forceful breathing of

dolphins, there is considerable heterogeneity between lung

regions. In addition to our results, several challenges have

been identified. One is that the movement of dolphins does

interfere with the data quality. It will therefore be important

to develop protocols in which we can identify and segment

data corresponding to quiet activity in the animals. (Ac-

knowedgement: ONR Award #: N000142312002)
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Abstract: This study aimed to describe the effects of 

individual PEEP titrated by EIT on regional ventilation 

and perfusion distribution in patients with acute 

respiratory distress syndrome (ARDS). The results 

suggested that individual PEEP titrated by EIT improves 

V/Q matching by reducing shunt without altering dead 

space in patients with moderate to severe ARDS. 

1 Introduction 

Electrical impedance tomography (EIT) has recently been 

introduced as a simple bedside tool to guide individual 

positive end-expiratory pressure (PEEP) selection by 

minimizing alveolar overdistension and collapse [1, 2]. 

However, the effects of PEEP titrated by EIT on 

ventilation/perfusion (V/Q) distribution remain unclear. 

Therefore, this study aimed to describe the effects of 

individual PEEP titrated by EIT on regional ventilation 

and perfusion distribution in patients with acute 

respiratory distress syndrome (ARDS). 

2 Methods 

This is a prospective, cross-over randomized study in a 

single medical ICU. Sixty-nine patients with moderate to 

severe ARDS undergoing mechanical ventilation. After a 

PEEP titration using EIT during a decremental PEEP trial, 

patients were then randomized to three different PEEP 

strategies which were set according to (1) crossing points 

method using EIT (PEEPEIT), (2) low PEEP-FIO2 table 

(PEEPlow), or (3) high PEEP-FIO2 table (PEEPhigh) [3]. 

Each PEEP level was maintained for 15 minutes, and 

subsequently, gas exchange, lung mechanics, and EIT data 

were collected. Pulmonary ventilation and perfusion were 

measured using the saline method. Patients were defined 

as high recruiters (Recruitment-to-Inflation ratio [R/I] > 

0.5) or low recruiters (R/I < 0.5). 

3 Results 

Among the included patients, the cause of ARDS was 

pulmonary ARDS (44.9%). PEEPEIT was higher compared 

with PEEPlow, but lower compared with PEEPhigh (11.6 ± 

2.6 cm H2O vs. 8.7 ± 1.9 cm H2O and 15.8 ± 2.0 cm H2O, 

respectively; P < 0.001 each). V/Q matching was higher 

with PEEPEIT compared to PEEPlow (76.4 ± 8.7 % vs. 70.9 

± 12.4 %, P = 0.007), whereas there was no difference 

between PEEPEIT and PEEPhigh. PEEPEIT and PEEPhigh 

reduced total shunt compared to PEEPlow (10.7 [6.5, 18.3] % 

and 11.0 [6.6, 16.4] % vs. 15.5 [10.2, 20.2] %, P = 0.012 

and P = 0.031, respectively). Dead space at global and 

ventral regions did not differ among different PEEP 

strategies. For high recruiters, V/Q matching was higher 

using PEEPEIT compared to PEEPlow and PEEPhigh. For 

low recruiters, there was no difference in the V/Q 

matching among three PEEP strategies. 

 

Figure 1: Effect of three different strategies on ventilation and 

perfusion distribution 

4 Conclusion 

Individual PEEP titrated by EIT improves V/Q matching 

by reducing shunt without altering dead space in patients 

with moderate to severe ARDS. 
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Abstract: This study presents a novel method combining 
electrical impedance tomography (EIT) with principal 
component analysis (PCA) for brain tumor diagnosis. 
Optimizing characteristic frequency through PCA 
significantly improves the differentiation and imaging of 
normal and abnormal brain tissues, demonstrating superior 
performance over traditional EIT methods in identifying 
brain tumors.   

1 Introduction 

Brain tumors pose a significant challenge in medical 
diagnostics, necessitating innovative techniques for 
accurate identification and characterization [1]. Traditional 
pathological diagnosis methods are complex and heavily 
reliant on the expertise of physicians, often leading to 
variability in diagnoses. Electrical impedance tomography 
(EIT) imaging has been introduced as a solution to the 
challenges. EIT simplifies the diagnostic process by 
providing real-time, non-invasive imaging that requires 
less interpretative expertise, thus reducing dependency on 
individual physician experience. This study proposes a 
novel approach by integrating principal component 
analysis [3] with EIT, termed PCA-EIT, aimed at 
enhancing the diagnostic accuracy for brain tumors 
through the optimized selection of characteristic 
impedance frequencies and improved imaging of tissue 
electrical properties. 

2 Methods 
A novel pathological approach is proposed for diagnosing 
brain tumors by combining electrical impedance 
tomography (EIT) and principal component analysis 
(PCA). Firstly, the electrical impedance spectrometer 
collects impedance data of cell suspensions (U87 and 
U138) from the brain tumor. Secondly, the impedance 
spectrums of cells are extracted from the impedance data 
of cell suspensions based on an equivalent circuit model 
[4], from which the influence of impedance from 
extracellular solution and electrodes is minimized. Thirdly, 
PCA is used to extract the optimum characteristic 
frequency for the identification of cells. Finally, the EIT 
imaging is implemented on the ex-vivo brain tumor tissues 
based on characteristic frequency extracted by PCA. 

3 Experiment 

Measurements were performed on four cancer cell 
suspensions to obtain impedance spectroscopy data. 
Figure 1 demonstrates the impedance spectrum data 
acquisition system, which consists of an impedance 
analyzer and a test head (Model IM7581: Hioki E.E 
Corporation, Japan), a coaxial sensor (RPSMAJ-
SMAP: To Conne Corporation, Japan), a PC. The 

experimental conditions were set as follows: the 
concentration of the cells was 1 × 106 cells/ml. The 
measurements were carried out in a frequency range 
from 0.1 to 5 MHz. An injection current of 0.01mA was 
employed. In addition, the measurements were repeated 
ten times for each cell sample. 

 
(a) EIS  (b) EIT 

 
Figure 1: Experiment setup 

4 Results 

The experiment results show that among all parameters of 
magnitude, phase angle, real part, and imaginary part of 
impedance, the phase angle has the optimum 
discrimination capability in the characteristic frequency 
range from 1.2MHz to 2.5MHz. By imaging the 
distribution of electrical properties of normal and 
abnormal tissues with the characteristic frequency, the 
abnormal tissue is able to be diagnosed effectively from 
the abnormal one. 

5 Conclusions 

A combination of electrical impedance tomography and 
principal component analysis (PCA-EIT) has been 
proposed for the diagnosis of brain tumors. The key 
findings of this research are: 

1). The phase angle component most accurately 
represents the characteristics of cellular impedance. 

2). The PCA-EIT method has a better capability in 
imaging the distribution of the electrical properties of 
abnormal tissues, which demonstrates a promising 
application in the pathological diagnosis of brain tumors. 
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Abstract: Tumor Treatment Fields (TTFields) is a non-

invasive anticancer modality that utilizes alternating elec-

tric fields to disrupt cancer cell division and growth. Tra-

ditional TTFields therapy for lung tumors faces challenges 

due to the influence of respiratory motion. Therefore, we 

design a novel closed-loop TTFields strategy for lung 

tumors to mitigate the impact of respiratory motion. Real-

time respiratory phase monitoring and dynamic parameter 

optimization are incorporated into the treatment regimen. 

Furthermore, we conduct theoretical analysis to evaluate 

the performance of the proposed method using the lung 

motion model. Compared to conventional TTFields set-

tings, employing our proposed closed-loop TTFields strat-

egy with the same dose setting (The total dose was the 

same as traditional setting, 2400 mA) allowed us to 

achieve a more extensive distribution of the treatment 

field (1.30 V/cm), maintaining consistency within the 

tumor across diverse respiratory phases. 

1 Introduction 

Tumor Treatment Fields (TTFields), as a non-invasive 

approach that uses low-intensity (1-3 V/cm) and interme-

diate -frequency (100-300 kHz) alternating electric fields, 

harnesses the power of electric fields to disrupt the divi-

sion of cancer cells, impeding their growth and progres-

sion [1]. In the management of TTFields for lung cancer, 

the respiratory cycle introduces dynamic changes in the 

shape and electrical properties of lung tissue [1]. These 

fluctuations impact the therapeutic electric field within the 

tumor, potentially diminishing treatment efficacy and 

resulting in sub-optimal outcomes. Therefore, we intro-

duce a novel TTFields strategy ensures dependable and 

efficient treatment field delivery by incorporating real-

time respiratory phase monitoring and dynamic adjust-

ment parameters of TTFields, effectively addressing the 

challenges posed by respiratory motion. 

2 Methods 

As illustrated in Figure 1, a fundamental component of our 

proposed closed-loop TTFields method is the incorpora-

tion of real-time respiratory phase monitoring and dynam-

ic parameter optimization into the ongoing treatment reg-

imen. For respiratory phase monitoring, we utilized EIT to 

real-time measure regional lung ventilation distribution by 

calculating the conductivity changes in the corresponding 

regions. As patients undergo TTFields, real-time EIT data 

continually updates the current respiratory phase. Subse-

quently, the dynamic optimization algorithm of TTFields 

utilizes this information to adjust and refine parameters in 

response to morphological changes in the lung.  

 
Figure 1: Illustration of adaptive closed-loop TTFields. 

3 Results and Conclusions 

As shown in Figure 2, we observed that within the tradi-

tional setting of TTFields, variations in the electrical con-

ductivity of lung during different respiratory phases led to 

a decrease in the average electric field intensity within 

lung tumors, transitioning from end-expiratory (1.08 V/cm) 

to end-inspiratory (0.87 V/cm) phases. However, employ-

ing our proposed dynamic optimization approach with the 

Same dose setting (The total dose was the same as Tradi-

tional setting, 2400 mA) allowed us to achieve a more 

extensive distribution of the treatment field (1.30 V/cm), 

maintaining consistency within the tumor across diverse 

respiratory phases. Furthermore, when we maintained an 

average treatment field intensity of 1 V/cm at the tumor 

shell with dynamic TTFields optimization (Different dose 

setting), we were able to achieve a 23.10% reduction 

(1338 mA) in the required total output dose compared to 

the Traditional setting. 

  

 
Figure 2: Distribution of mean electric field intensity and 

focality generated within tumor shell by different 

TTFields settings.  

Our proposed closed-loop TTFields method has the poten-

tial to significantly advance lung tumor therapy by miti-

gating the impact of respiratory motion. 
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Abstract: Accurate quantification of liver fatty acid 

composition provides critical information in diagnosis and 

treatment of many liver diseases. Chemical-shift encoded 

MRI allows for quantification of fatty acid composition, 

including proton-density fat fraction (PDFF), number of 

double bonds per molecule (NDB), and chain length (CL), 

etc. Meanwhile, electrical impedance tomography (EIT) 

provides critical information of liver conductivity. 

However, it remains a challenge to integrate low-resolution 

EIT images and high-resolution of MRI images. As a 

translational large animal model, pigs have been 

increasingly used in recent years to study neurological 

disorders, liver, and heart diseases due to significant 

similarities between pigs and humans in brain, liver, and 

heart anatomy and physiology. In this talk, we will present 

challenges and benefits of integration of the two modalities 

of imaging, EIT and MRI, in liver fat spectral modelling 

using translational pig models. Potential correlation of EIT 

conductivity with MRI PDFF, NDB, and CL will also be 

discussed.  

1    Methods 

Chemical-shift encoded magnetic resonance imaging 

(CSE-MRI) water-fat separation has recently emerged as a 

useful method for the quantification of triglyceride 

composition in fatty tissues. Meanwhile, EIT provides a 

cost-effective and portable method for early and operator-

independent detection of fatty liver disease. 

Tremendous interest has recently grown in using swine as 

a translational large animal model to study early 

development, neurological disorders, and liver diseases due 

to the significant similarities between pigs and humans in 

liver/brain anatomy and physiology. 

1.1 In vitro experiment 

For phantom experiments, three small 5-ml vials (one filled 

with each oil or butter sample) were placed into a larger 

cylindrical tube (28 mm in diameter, 114 mm in length) 

filled with water. Experiments were also performed to scan  

brown adipose tissue and inguinal white adipose tissue of 

two two-month old C57/BL6 mice [1] (Fig. 1).  

1.2 In vivo experiment. 

MRI images were acquired from swine livers (10-week-old) 

using IDEAL IQ sequences on a 3T MRI scanner.  

Quantitative measurements of Proton density fat fraction 

and R2* (iron concentration) measurements were 

conducted to quantify their spatial distributions (Fig. 2).  

1.3 Integration of EIT/MRI: challenges and benefits 

Integration of low-resolution EIT images and high-

resolution MRI images would enable clinical applications 

of EIT in diagnosis and treatment of liver diseases. 

However, there exist many challenges, such as how to fuse 

the two modalities and achieve optimal information [2]. 

Feasible solutions include using deep learning 

(convolutional neural network) or a cascaded cycle 

generative adversarial network model. Pearson’s 

correlation analyses comparing EIT conductivity and MRI 

PDFF, NDB, and CL with other measurements (body mass 

index, torso circumference, etc.) also offer critical 

information for diagnosis/treatment of many liver diseases. 

  

Figure 1: (Left) Representative ndb (first row), nmidb (second 

row), cl (third row), and PDFF (fourth row) maps obtained using 

material specific spectroscopy models and the 9-peak liver 

model; Second column (e–h) for olive oil (bottom left vial), corn 

oil (bottom right vial), and butter (top vial); (Right) Anatomical 

image(a) and ndb (b), nmidb (c), cl (d), and PDFF (e) maps 

displaying intercapsular region. 

 
Figure 2. Proton density fat fraction and iron concentration 

measurements from swine livers (10-wwek old). 

2    Conclusions 

This paper investigates quantification of liver fatty acid in 

a large translational swine model and explores benefits and 

challenges of integrating MRI and EIT for clinical 

diagnosis and treatment of liver diseases.   
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Abstract: Knowledge of dielectric properties of healthy
and cancerous hepatic tissue during heating is essential in
hyperthermia. Through in vivo heating and measurement
on mice, this research concluded the in vivo temperature-
dependent dielectric characteristics for liver and hepatic tu-
mor tissue, which would contribute to both procedure de-
sign and EIT monitoring during hyperthermia.

1 Introduction
Hyperthermia is an effective, non-invasive and relatively
safe treatment for liver cancer [1]. The temperature-
dependent changes in electrical properties not only sig-
nificantly affect the efficacy of thermal therapy, but also
contribute to monitoring during treatment using electrical
impedance tomography (EIT)[2].Researches showed a sig-
nificant different in resistivity between removed organs and
those measured in vivo [3, 4]. In order to thoroughly under-
stand the electrical characteristics of tissues during thermal
treatment, systematically in vivo temperature-dependent di-
electric properties of both healthy liver and cancerous hep-
atic tumor in the same animal type should be conducted.

2 Methods
2.1 Cell lines and animals

Eight-week-old male C57BL/6J mice were obtained from
the Animal Center of the Fourth Military Medical Univer-
sity. To establish the tumor bearing mice, mice were subcu-
taneously injected with 1×107 of Hepa1-6 cells in the right
flank.

2.2 In vivo dielectric property measurement

The in vivo heating of liver or tumor tissue, from 30 °Cto 90
°C, was achieved by the irradiation of an 808-nm laser with
adjustable power (0-5W). The measurement was performed
using the Solartron 1260+1294A impedance analyzer at fre-
quency between 1 Hz to 1 MHz with injection current of 0.2
mA.

2.3 Statistical analysis

Equivalent circuits with parallel resistors and constant
phase angle element (CPE) were built based on the multi-
order Cole-Cole equivalent model.The impedance data

were normalized with that at 30◦C, named as k-value, in
order to remove individual difference. After confirmation
of normality, Pearson analysis was performed to investigate
the correlation between two datasets, and P values of <0.05
indicate statistical difference.

Figure 1: Plots of real and imaginary parts of impedance for
healthy livers ((a) and (c)) and hepatic tumors ((b) and (e)). (c)
and (f) were plots of temperature-dependent Cole-Cole models for
healthy livers and hepatic tumors, respectively.

3 Conclusions
In vivo temperature-dependent dielectric properties for the
liver and hepatic tumor were displayed in Figure 1, and the
normalized impedance was linearly correlated with temper-
ature (Table 1). The results will contribute not only to the
development of ablation systems but also techniques for
temperature monitoring during hepatic hyperthermia.
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Table 1: Coefficients in the linear regression of k-values and temperatures for livers and tumors at six different frequencies.

1kHz 10kHz 50 kHz 100 kHz 500 kHz 1MHz

tissue liver tumor liver tumor liver tumor liver tumor liver tumor liver tumor
a -0.013 -0.009 -0.012 -0.009 -0.011 -0.008 -0.009 -0.008 -0.007 -0.007 -0.008 -0.007
b 1.407 1.277 1.384 1.260 1.345 1.247 1.308 1.233 1.214 1.219 1.242 1.211

r-square 0.939 0.848 0.948 0.919 0.954 0.903 0.940 0.925 0.920 0.898 0.937 0.816
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Abstract: This paper presents a Portable Adjustable Elec-
trical Impedance Tomography System (PAEIT), which con-
sists of 16/32 electrodes, is a small size, and the excitation
frequency, scanning mode and frame rate can be adjusted
by keystrokes. The default current source frequency is 40
kHz, the amplitude is 0.65 mA, and good signal-to-noise ra-
tio (36dB). Data acquisition is performed in adjacent drive
mode, and the acquisition rate is stable (7/2 frames/SEC,
corresponding to 16/32 electrodes).

1 Introduction
Electrical Impedance Tomography (EIT), as a new non-
invasive, non-radiation and non-invasive imaging technol-
ogy, has important clinical applications in respiration mon-
itoring , brain imaging and cancer screening. Compared
with magnetic resonance, CT and X-ray imaging technol-
ogy, it has better real-time performance and security. The
principle is to inject a safe current to the surface of the hu-
man skin through electrodes, while measuring the response
voltage of the remaining electrodes and reconstructing the
conductivity distribution of the internal tissues or organs of
the human body.

2 Methods
The hardware of the PAEIT system is shown in Fig. 1. The
PAEIT is designed as a standalone portable device, which
is small and lightweight, with dimensions of 8 cm × 8 cm ×
8 cm and a weight of only 268 g. Furthermore, the PAEIT
system is modularly designed in a cascade fashion and con-
sists of five independent PCB circuit modules, including the
main control circuit board, the current source and voltage
detection circuit boards, the signal generating circuit board,
the multiplexing circuit board, and the system power supply
circuit board. The use of a combination of pin connectors
between each board enhances the scalability, flexibility and
portability of the circuit system.

The PAEIT system works as follows: firstly, the MCU
STM32 acts as the main controller to coordinate all the
other modules. Secondly, the signal generator provides
a sine wave voltage signal using a direct digital synthe-
siser (DDS). Then, the sinusoidal voltage signal is con-
verted to a current signal by a voltage-to-current converter
(VCCS). In addition, four 16/32-selective multiplexers are
used so that two adjacent electrode sets are current inputs
and the remaining two adjacent electrodes are used as volt-
age detection terminals. The voltage detection is performed
by a multi-stage amplifier circuit consisting of an instru-
mentation amplifier, and the sampled signal is obtained by
ADC analogue-to-digital conversion, and the current volt-
age measurement is calculated using Fast Fourier Trans-
form (FFT) or IQ demodulation. One frame when all elec-
trodes are cycled once consists of 928/208 measured values.
Finally, the acquired data is transmitted to a notebook com-

puter via Bluetooth or USB for image reconstruction.

Figure 1: PAEIT System Hardware.

3 Results
To demonstrate the capabilities of the proposed PAEIT,
where the number of electrodes in the PAEIT system is ad-
justed to 16. The simulated thorax region is two circular
water tanks with diameters 16cm and 20cm, respectively,
with a background constructed by saline and a conductivity
adjustment of about 1S/m, while the model of the lung is
generated by a 3D printer using PETG material with a con-
ductivity of 0 S/m. Three reproducible algorithms are se-
lected, including NOSER [1] (Newton’s One Step Error Re-
constructor), Total Variation [2] and Block Sparse Bayesian
Learning (BSBL) [3] to image reconstruct, as shown in Fig.
2.

GroundTruth NOSER TV BSBL
Figure 2: Image Reconstruction Results.

4 Conclusions
In this paper, we design a 16/32-channel PAEIT system with
portability and real-time performance, and the ability to set
the system functions on demand, which is suitable for gen-
eral data acquisition. Future work will focus on improving
the hardware system so that it can be applied to real respi-
ratory data acquisition.
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Abstract: This study evaluates the performance of multi-

frequency electrical impedance tomography (MF-EIT) in 

visualizing complex dynamic multiphase flows using a 

Three-Dimensional Fluid-Electric field Coupling Model 

(3D-FECM). We adopt five current frequencies: 10 kHz, 

100 kHz, 200 kHz, 500 kHz, 1MHz, and 10MHz. Through 

numerical experiments, time-difference (TD) real and 

imaginary components of EIT data are collected and the 

amplitude and phase at each frequency can be calculated. 

Additionally, we obtain the frequency-difference (FD) data 

for the amplitude and phase parts, using 10 kHz as the 

reference frequency. Image reconstruction is performed 

using the Standard Tikhonov Regularization (STR) 

algorithm and is evaluated by the Structural Similarity 

Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR). 

Results demonstrate that FD imaging achieves its best 

image quality at 1 MHz. 

1 Introduction 

Multi-frequency Electrical Impedance Tomography (MF-

EIT) is a cutting-edge imaging technique that visualizes the 

electrical properties of objects or tissues across different 

frequencies [1]. It holds great promise for dynamic 

multiphase flow imaging, offering insights into the 

frequency-dependent behaviours of electrical properties, 

which can significantly vary among different phases of 

multiphase flow. However, the complex nonlinear and 

hierarchical multi-scale characteristics of multiphase flows 

make it challenging to obtain ground truth profiles in 

practice. This challenge complicates the modelling and 

evaluation of MF-EIT's performance, leading to a shortage 

of reference standards for the agile assessment of MF-EIT 

image reconstruction algorithms. Such limitations hinder 

the advancement of MF-EIT in multiphase flow testing 

applications. To address this issue, we developed a 3D-

FECM that simulates dynamic multiphase flows. Integrated 

with MF-EIT, this model enables the acquisition of 

corresponding EIT measurements instantaneously. We then 

employ a suite of metrics, including the SSIM and PSNR, 

to quantitatively evaluate the quality of images 

reconstructed by MF-EIT.  

2 Methods 

We utilized the 3D-FECM to simulate dynamic water-gas 

flow and designed 16-electrode EIT sensor with excitation 

currents ranging from 10k to 10MHz for flow measurement 

(see Figure 1). The fluid-electric field coupling simulation 

employs a laminar two-phase flow interface to model gas-

liquid interactions, expressed as follows: 

𝜌
∂𝐮

∂𝑡
+ 𝜌(𝐮 ⋅ ∇)𝐮 = ∇ ⋅ [−𝑝𝐈 + 𝜇(∇𝐮 + (∇𝐮)𝖳)]𝐅 + 𝐅𝑔  (1) 

∇ ⋅ 𝐮 = 0                                            (2) 

where ρ is the mixture density；u is the mass-averaged 

velocity vector; 𝑝 is the pressure; I is the identity tensor; F 

is the volume force vector, Fg is the gravity force vector; 𝜇 

is the mixture dynamic viscosity. 

For EIT image reconstruction, the STR algorithm is 

employed, formulated as: 

     Δ�̂� = arg 𝑚𝑖𝑛
Δ𝜎

 
1

2
(∥ Δ𝐕 − 𝐉𝐸𝐼𝑇Δ𝜎 ∥2 +∥ 𝜆𝐄Δ𝜎 ∥2      (3) 

where Δ�̂� represents the estimated conductivity variation, 

𝜆 is the regularization coefficient, E is an identity matrix, 

ΔV is the change in voltage, and JEIT is the Jacobian matrix 

related to the conductivity changes. 

 

  
Figure 1: Geometric structure of the 3D-FECM. 
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Figure 2: Quantitative evaluation results. FD uses 10k as the reference. 

3 Conclusions  

We proposed 3D-FECM integrated with MF-EIT to 

simulate dynamic multiphase flows. We demonstrate this 

approach a numerical platform to evaluate the imaging 

performance of MF-EIT. The evaluation results show that 

the MF-EIT achieves its best FD image reconstruction at a 

frequency of 1 MHz, as indicated by peak SSIM and PSNR 

values of 0.8532 and 62.2845, respectively. 
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Abstract: Renal haemorrhagic fever combined with ARDS 

may resulting in severe respiratory and circulatory 

disturbances. EIT was utilised to observe ventilation and 

perfusion in a Renal haemorrhagic fever patient combined 

with ARDS. The reconstructed EIT images demonstrated 

the changes in ventilation and perfusion distribution before 

and after treatment. 

1 Introduction 

Renal haemorrhagic fever (RHF) is an epidemic disease 

caused by hantaviruses, with rodents as the main source of 

infection [1]. The progression of RHF may be combined 

with ARDS, which results in pulmonary congestion and 

oedema, and affects the normal ventilation and air exchange 

of alveoli, resulting in severe respiratory and circulatory 

disturbances [2]. For such patients, radio examinations are 

not always permitted due to the possibility of renal rupture 

by frequent movement, hence lacking suitable methods to 

assess the recovery of pulmonary circulation and 

ventilation during treatment. Here, EIT was utilised to 

observe ventilation and perfusion in a RHF patient 

combined with ARDS.  

2 Methods 

2.1 Data collection 

The patient was received treatment in the department of 

infectious diseases from 28 November 2023 to 19 

December 2023, and the observational study was conducted 

after being informed consent (Ethics Approval: TDLL-

202308-05). When the patient was in a supine position, 16 

electrodes were placed equally spaced between the third 

and fourth ribs around the chest. The EIT data (40 frames 

per second) were acquired by using EC-100 PRO (UTRON 

Technology Co., Ltd., Hangzhou, China). Meanwhile, A 

photoplethysmography (PPG) sensors was used to record 

the cardiac pulse information. After breathing for one 

minute, the patient was instructed to take a breath-hold 

about 10 seconds, during which data for all cardiac cycles 

within the breath-hold period and respiratory impedance 

data for the entire acquisition process were gathered. Data 

were collected on 1 December 2023 and 17 December 2023, 

earlier and later in the admission period, respectively. 

2.2 Data Analysis 

All EIT and PPG data are aligned according to the time 

sequence. Based on the global ventilation impedance 

variation measured by EIT, the first and maximum point of 

one cycle were identified as the background and foreground 

frame for reconstruct imaging, respectively. Based on the 

feature points of PPG signal, the corresponding impedance 

data during breath-hold will be selected for reconstructing 

the lung perfusion EIT images. EIT reconstruction images 

were completed based on GREIT through EIDORS V3.10 

software platform. 

 
Figure 1: Distribution of lung ventilation and perfusion based on 

EIT reconstruction images on Dec 1 and Dec 17, 2023. 

Reconstructed EIT images were divided equally into four 

quadrants, and the proportion of ventilation impedance and 

perfusion impedance within each quadrant was calculated 

separately. 

Table 1: Proportion of ventilation and perfusion in each quadrant 

of the EIT reconstructed images. 

Quadrant 
Ventilation proportion (%) Perfusion proportion (%) 

Dec 1 Dec 17 Dec 1 Dec 17 

I 35.38 25.76 41.14 20.33 

II 27.49 25.31 25.39 23.69 

III 13.32 24.44 7.93 32.84 

IV 23.81 24.49 25.54 23.14 

3 Conclusions 

The RHF patient's ARDS symptoms disappeared, and his 

ventilation and perfusion returned to normal with effective 

treatment, which could be observed by EIT. 
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Abstract: Electrical impedance tomography (EIT) has 

been used to titrate positive end-expiratory pressure 

(PEEP). This study aims to develop a comprehensive view 

of the efficacy and long-term prognosis of EIT-guided 

PEEP compared to other conventional approaches in 

various clinical scenarios, including patients with acute 

respiratory distress syndrome (ARDS), hypoxemic acute 

respiratory failure (hARF) and patients undergoing 

surgery under general anaesthesia. 

1 Introduction 

Determining the “ideal” PEEP remains difficult in real-life 

practice. In recent years, many personalized PEEP titration 

strategies based on various parameters have been proposed, 

including lung or respiratory system compliance (CL/Crs), 

stress index, pressure-volume (PV) curve, or 

transpulmonary pressure (PL). These approaches, 

unfortunately, are all rooted in global parameters that 

cannot completely represent regional lung status, 

especially in diseases with heterogeneous representation. 

EIT is a non-invasive, non-radiological, and bedside lung 

monitoring tool that provides real-time and continuous 

information on regional ventilation distribution. It has 

been evaluated in many studies to guide PEEP titration in 

multiple clinical conditions such as ARDS, hARF, and 

surgery under general anesthesia. Despite its promising 

benefits and wide range of clinical applications, studies to 

date have not been able to achieve practical results 

consistently [1-3], especially in long-term prognosis 

2 Methods 

The literature search was conducted in PubMed, Web of 

Science, Embase, and Cochrane Library, from inception to 

July 30, 2023 (ARDS/hARF) and October 5, 2023 

(surgery). The Cochrane risk of bias assessment and the 

methodological index for non-randomized studies were 

used for quality appraisal. The main outcomes were PEEP 

level, PaO2/FiO2 ratio, CL/Crs, driving pressure (ΔP), in-

hospital mortality, and postoperative pulmonary 

complications (PPCs) in surgical studies. 

3 Results 

Four randomized controlled trials (RCTs), one historical 

control study, and six before-after studies of ARDS/hARF, 

as well as eight surgical RCTs, were retrieved. Subgroup 

analysis has been carried out and analysis of before-after 

studies was performed separately. Diverse PEEP strategies 

were adopted in the included studies, such as low/high 

PEEP-FiO2-table of ARDS-net, pressure-volume loop, and 

transpulmonary pressure. In ARDS/hARF studies, the EIT 

strategy did not result in considerably enhanced 

respiratory system mechanics, including comparable 

PaO2/FiO2 ratios, comparable ΔP, and increased CL/Crs. As 

for long-term prognosis, the rough overall meta-analysis 

showed decreased in-hospital mortality (risk ratio 

RR=1.54, 95% CI=(1.09, 2.18), P=0.01). In patients 

undergoing general anesthesia surgery, the EIT group 

demonstrated improved PaO2/FiO2 ratio, CL/Crs, and ΔP 

versus the fixed 4 or 5 cmH2O PEEP. In postoperative 

prognosis, incidence of PPCs was generally comparable 

between the two groups. 

 
Figure 1: Forest plot of in-hospital mortality in EIT and control 

groups for ARDS/hARF studies. 

4 Conclusion 

The EIT-derived PEEP setting strategy might be 

associated with potential benefits in respiratory outcomes 

and prognosis in ARDS/hARF and surgical patients.  

Current data is insufficient to provide solid evidence. 
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Abstract: The electrical impedance tomography for ob-
jects with non-circular boundaries often introduces a certain
amount of trouble. In this paper, we proposed a modifica-
tion in the direct method through introducing the conformal
mapping to realize the extension of applicability.

1 Introduction
Electrical Impedance Tomography (EIT) is commonly used
for objects with circular cross-section, however, it is often
troublesome to re-model the forward problem and compute
the sensitivity matrix via finite element analysis for objects
with non-circular boundary. In this study, we attempt to uti-
lize the principle that a simply connected domain is equiv-
alent to a unit disk, combined with the advantages of point-
by-point imaging in direct methods, to achieve fast imaging
for objects with non-circular boundary through the use of
conformal mapping.

2 Methods
Calderon’s method is a direct method for solving the EIT
inverse problem. With the special exponentially growing
solutions tool known as complex geometrical optics (CGO)
solutions, it has achieved inverse problem solving without
the aid of sensitivity matrix, and has inspired the creation of
D-bar method [1], a family of direct EIT methods. Accord-
ing to the Calderon’s method, the estimation of the conduc-
tivity changes δσ(z) at the point z = x+ iy is:

δσ(z) = − 1

2π2

∫
R2

t (k)

|k|2
exp

[
−i

(
k̄z̄ + kz

)]
dk

where k = k1 + ik2 can be regarded the complex fre-
quency and t(k) is known as the scattering transform with
the form t(k) :=

∫
∂D

eik̄z̄ (Λσ − Λref ) e
ikzdl(z). Note

that the Dirichlet-to-Neumann map (DN map) Λσ can be
obtained by applying the trigonometric patterns, i.e., or-
thogonal trigonometric basis currents/voltages were applied
on all electrodes simultaneously and measured on all elec-
trodes [2].

According to the Riemann mapping theorem, any sim-
ply connected region, regardless of the complexity of its
boundary shape, can be conformally mapped to the unit
disk. Taking a rectangular measurement object as an ex-
ample, the rectangular domain is denoted as the physical
domain D, the unit disk is denoted as the auxiliary domain
W . The points in the physical domain D and auxiliary do-
main W are respectively denoted as z and w. Suppose we
have found a conformal mapping f : D → W , w = f (z)
that maps the rectangular domain to the unit circle domain,
and we have obtained the conductivity distribution func-
tion δ̃σ(w) : W → R in the auxiliary domain W by the
Calderon’s method. Now we wish to obtain the conductiv-
ity distribution function δσ(z) : D → R in the physical
domain D, which can be obtained through δσ = δ̃σ ◦ f .

Finally, The flow of the modification fo Calderon’s

method via conformal mapping is : (Λσ,Λref ) → t(k) →
δ̃σ(w) → δσ(z).

3 Results
We performed simulations for three different shape objects
with 32-electrode configurations. Through applying the
trigonometric voltage patterns, DN map Λσ and Λref (ref-
erence measurement without targets) were constructed. Af-
ter obtaining the reconstructions in the auxiliary circular
domain, the imaging in the physical domain was obtained
through the one-to-one correspondence of conformal map-
ping, as shown in Fig. 1.

Figure 1: Pre-set phantoms and EIT reconstructions in differ-
ent cases. First column presents the objects with three different
boundary shapes for simulation. The second and third columns
show the image reconstruction results for two different conductiv-
ity settings.

4 Conclusions
We pose the conductivity reconstruction problem for non-
circular boundary objects in the Calderon’s method and
solve it using the conformal mapping approach. The re-
sults show that the modification with conformal mapping
effectively extends the applicability of the direct method
in boundary shapes. More complex conformal transforma-
tions can be realized by Schwarz-Christoffel mapping [3].
The approach is limited to 2D EIT, and is difficult to extend
to 3D EIT.
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Abstract: The present study aimed to propose a complete 

artificial intelligence (AI) framework for predicting the 

weaning outcomes of weaning patients, using features 

captured by various electrical impedance tomography 

(EIT) indexes. Feature selection, data balance processing, 

optimal model screening, and the Shapley additive 

explanations (SHAP) model interpretability were 

comprehensively considered. 

1 Introduction 

Prolonged mechanical ventilation (PMV) might cause 

ventilator-associated pneumonia and diaphragmatic injury 

and may lead to worsening clinical outcomes and hard-to-

wean [1]. In recent years, artificial intelligence technology 

has been used to predict weaning outcomes. However, the 

features used in existing artificial intelligence (AI) models 

lack real-time regional ventilation information of patients 

during weaning, and ventilator-related parameters cannot 

be obtained due to the need to remove ventilator-related 

parameters in some weaning models. Electrical impedance 

tomography (EIT) is a non-invasive, real-time, bedside 

imaging technique that can monitor the distribution of 

ventilation in lung regional areas [2]. We proposed a 

complete ML framework for predicting the weaning 

outcomes of PMV patients, using EIT features. 

2 Methods 

The data were collected at Far Eastern Memorial Hospital, 

Chinese Taipei. The original study [3] was approved by 

the local Ethics Committee (FEMH-IRB-103133-E). 30 

PMV patients were included (weaning success: weaning 

failure=21:9). A total of 84 complete samples were 

collected from 30 patients under different weaning modes 

(the incidence rate of weaning failed is 42.4%). The 

training set and the test set are divided in a 7:3 ratio. 

As shown in Figure 1, the ML model establishment 

process was as follows: (1) continuously collecting the 

EIT data of PMV patients during the weaning process, 

extracting the EIT data features, and recording the 

weaning outcomes of patients; (2) the feature selection, 

including identifying the number of features and specific 

feature selection; (3) the samples division into training set 

and test set, and the use of SMOTE method to balance the 

training set samples. (4) the weaning outcomes prediction 

model establishment with ten-fold cross-validation to 

obtain the best model hyperparameters. (5) evaluation of 

the model performance with test sets; (6) SHAP model 

explanation with SHAP plot. 

 
Figure 1: Predictive model construction process. 

2.1 Main results 

To improve the performance of the ML model, 13 important 

features were selected from 95 EIT features for subsequent 

training. These features mainly included the evenness of 

ventilation time and spatial distribution, the ability of spontaneous 

breathing, and the degree of alveolar asynchronous occurrence. 

As shown in Table 1, the XGBoost model has the 

highest AUC, accuracy, precision, and f-score. 

Table 1 The overall performance of ML models for test set 

 

3 Conclusions 

In this study, the AI framework of weaning can effectively predict 

weaning outcomes while providing clinicians with global and 

individual sample-level interpretation of model predictions. This is 

expected to help clinicians better manage PMV patients weaning. 
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Abstract: The aim of this study was to use electrical
impedance tomography (EIT) to find a completely non-
invasive means for real-time monitoring and early warning
of pulmonary embolism, so as to replace hypertonic saline
angiography (invasive) in clinical application.

1 Introduction

Monitoring and early warning of pulmonary embolism is a
key factor to guide clinical treatment, especially for
critically ill patients. However, bedside monitoring is not
possible with existing medical technology and is
accompanied by radiation. Pulmonary EIT, as a new
monitoring technique, has been developed in the past few
years, but it remains to be explored in terms of blood
perfusion. A large number of animal experiments have
shown that hypertonic saline angiography is closely
related to the gold standard for detecting pulmonary
embolism (CTPA), but this technique cannot give early
warning of pulmonary embolism and increases the risk of
infection in patients [1-2]. Therefore, it is urgent to seek a
new technical means to achieve the purpose of real-time
monitoring pulmonary embolism.

2 Methods

The EC-100 system jointly developed by the course team
and Hangzhou Yongchuan Technology Co., Ltd. was used
to select 12 landrace pigs with a body weight of (18.75±
2.56)kg as experimental subjects. During supine apnea,
blood perfusion before and after embolization was
monitored by vascular pulsation technique and hypertonic
saline angiography (5ml 10%NaCl), as shown in Figure 1.

Figure 1: Establishment of pulmonary embolism model.

The four-quadrant method was used to divide the areas of
interest for pulmonary perfusion , and the V/Q parameters
obtained by EIT under different perfusions were
calculated by combining lung ventilation images[2]. The

formula for obtaining the proportion of local pulmonary
blood perfusion is as follows:

Y1×pixelROII
= max (Xn×pixelROI1

) − min (Xn×pixelROI1
)

YROII = mean(Y1×pixelROI1
)

ProportionROIx = YROIx
YROII+YROIII+YROIIII+YROIIV

× 100%
(1)

3 Results

The results of the two methods for monitoring perfusion
before and after pulmonary embolism showed that there
were significant differences between pulsation and
hypertonic saline angiography in local blood perfusion
before and after embolism, as shown in Table 1. The dead
cavity fraction of V/Q on the embolized side (left)
increased significantly, and the V/Q after embolization
was significantly misaligned, as shown in Figure 2.

Figure 2: A: one-dimensional impedance signal (red); B:
ventilation image, pulsation perfusion image and V/Q matching
image; C: ventilation image, saline perfusion image and V/Q
matching image.

4 Conclusions

EIT heartbeat technology has shown great clinical
application prospect in real-time monitoring of pulmonary
embolism, which lays a foundation for clinical research of
EIT monitoring of local pulmonary perfusion, and
pulsation is expected to monitor and early warning of
pulmonary embolism in clinical practice.
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Table 1: The blood perfusion before and after pulmonary embolism was monitored by cardiopulsation technique and hypertonic
saline angiography, and the area of interest of pulmonary perfusion was divided by four-quadrant method. The P-value is obtained by
statistical analysis.

ROI Pulsate health/H-Saline health Pulsate embolism/H-Saline embolism Pulsate p_value/H-Saline p_value
ROI_I% 39.93±4.67/27.07±1.91 55.01±3.72/40.77±2.56 <.001/<.001
ROI_II% 24.81±4.52/24.77±2.91 19.01±1.18/25.65±2.41 <.001/.013
ROI_III% 13.19±3.18/20.95±2.22 9.44±1.34/16.61±1.57 <.001/<.001
ROI_IV% 22.02±2.77/27.20±3.28 16.54±3.34/16.98±2.60 <.001/<.001
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Abstract: We treat the body movement interferences of
patient as impulsive noise. Then, a two-stage imaging al-
gorithm, consisting of denosing and imaging, is presented.
Experimental results on clinical data demonstrate that the
proposed algorithm removes the body movement interfer-
ences in EIT data and provides high-quality EIT images.

1 Introduction
Electrical impedance tomography (EIT) [1] has become not
only a non-invasive, radiation-free monitoring tool, but also
an important direction to improve patient care in critical and
respiratory medicine. Currently, most of the existing stud-
ies have concentrated on developing algorithms to enhance
imaging under ideal conditions, namely, improve quality of
EIT images based on measurements without clinical inter-
ferences. However, clinical interferences occur frequently
in practice because of body movements of patient or poorly
connected electrodes [2]. Hence, imaging performance of
existing methods may degrade significantly without adopt-
ing proper techniques against such interferences.

2 Methods
In the perspective of signal processing, dramatic measure-
ment interferences caused by body movements can be treat-
ed as impulsive noise. Inspired by this, we model the EIT
measurements as a matrix and propose a robust EIT imag-
ing approach based on the low-rank matrix recovery [3]. To
attain high-quality EIT images, we divide the imaging task
into two steps, viz. denoising and imaging. In particular,
the denoising subtask is of two stages as shown in Fig. 1,
where robust statistical analysis and low-rank recovery are
utilized to detect outliers and restore the EIT data, respec-
tively. In detail, our denoising algorithm first identifies the
entries corrupted by impulsive noise in EIT data and con-
sider them as missing elements. Subsequently, the devised
algorithm recovers the missing components by exploiting
the low-rank property of EIT data. In doing so, the impul-
sive noise is removed from EIT data. Finally, the recovered
data are used for imaging as in ideal situation. The proposed
approach is referred to as robust EIT, short as REIT.

Figure 1: Flowchart of proposed algorithm.

3 Results
In the experiments, the EIT data are continuously collect-
ed with the commercial EIT system (VenTom-100, Mi-

dasMED Biomedical technology, Suzhou, China). Fig. 2
presents results with various approaches for one patien-
t with bilateral lung ventilation, where w. for with, w/o
for without, O for original, and E for estimated. We can
observe that the significant artifacts caused by body move-
ment interferences exist in the time-series EIT images and
the chest global impedance. The artifacts completely dis-
tort the respiratory waveforms and the regional ventilation
distribution. Apparently, after the boundary voltages with
impulsive noise are processed, only the EIT images recov-
ered by REIT show regional ventilation distribution in the
bilateral lungs.

Figure 2: EIT images by different approaches for impulsive noise
(IN) composed of multiple measured data points in the patient with
bilateral lung ventilation. (a) Original time-series EIT images dur-
ing a spontaneous breathing cycle, and the estimated time-series
EIT images by using REIT, Butterworth filtering, FIR filtering,
mean filtering, and median filtering. (b) Original global chest
impedance and estimated chest impedance by different methods.

4 Conclusions
To resist the body movement interferences, we formulated
the denoising task as the robust low-rank matrix recovery
optimization problem. Specifically, the problem was divid-
ed into two subtasks, i.e., outlier detection and low-rank re-
covery. The former was exploited to identify the entries
corrupted by outliers and then considered them as missing
elements, while the latter exploited the low-rank property
to restore the missing entries, such that the body movement
interferences were removed. Experimental results on clinic
data verifies the effectiveness of our algorithm against body
movement interferences.
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Abstract: This study investigates the possibility of using 

electrical impedance tomography (EIT) as an early 

screening method to identify lung function impairment in 

subjects with normal spirometry. 

1 Introduction 

Pulmonary function testing (PFT) with a spirometer is a 

well-established measurement in assessing lung function. 

However, the sensitivity of spirometry in detecting early 

lung function deterioration has limitations. Spirometry 

provides global lung function measures, which fail to 

capture regional and subtle changes in lung ventilation and 

gas distribution that may occur early in the disease process. 

Electrical impedance tomography (EIT) is a promising 

technology that offers the potential to address the 

limitations of spirometry and traditional imaging modalities 

[1, 2]. The aim of the study was to explore the possibility to 

use EIT as an early screening method to identify lung 

function impairment. 

2 Methods 

A belt with 16 equidistantly fixed electrodes was placed 

around the chest in one transverse plane at the level of the 

5th intercostal spaces at the parasternal line. For female 

subjects, if 5th intercostal space was not accessible, the 

electrode belt was placed above the breast (~4th intercostal 

spaces). Data were recorded at 20 Hz. Healthy subjects 

scheduled for annual body check in Oct. 2023 were 

screened. Subjects who were unable to complete the forced 

vital capacity (FVC) maneuver meeting the guidelines; 

forced expiratory volume in 1 second (FEV1) < 80% 

predicted; FEV1/FVC<0.8 were excluded. 

Time constant map was calculated as described in a 

previous study [3, 4]. In brief, for every pixel within the 

lung region, the regional time constant was calculated by 

fitting the following exponential equation: 

𝑍(𝑡) = 𝑍0 ∙ 𝑒
−𝑡

𝜏⁄ + 𝑐    (1) 

Where Z(t) is the relative impedance for a pixel within the 

lung at time point t, Z0 is the impedance at the start of 

expiration, t represents the time from the end-inspiration to 

the end-expiration, τ denotes the regional time constant, and 

c the end-expiratory volume. Subjects whose values were 

above the threshold were recommended to have a follow-

up CT examination. For smokers with ≥10 pack-year 

tobacco consumption, CT was recommended even if their 

τ  was lower than the threshold. Due to the radiation 

exposure, the CT examination was conducted based on the 

voluntary consent of the subjects. 

3 Results 

A total of 1980 subjects for annual bodycheck were 

screened, and 216 subjects were included. FVC and EIT 

measurements were conducted simultaneously. FVC 

maneuver from 74 subjects did not meet the ATS-ERS 

criteria. Further 12 subjects had an FEV1 < 80% predicted. 

At the end, final analysis was conducted in 130 subjects.  

For τprod, 80% of the non-smoker’s threshold was 0.1066 s2. 
The positive rate of impaired lung function in EIT-

abnormal subjects that was reconfirmed by CT was 0.59 

(13/22). Based on the available CT data, the sensitivity and 

specificity of EIT-based screening were 81.3% and 50.0%, 

respectively. 

Table 1. Summary of the number of CT results classified as 

abnormal and normal. 

Total 

N=130 
τprod > 0.107 s2 

τprod ≤0.107 s2 & 

smoker ≥10 pack-year 
sum 

With 

CT 

Total 22 Total 12 34 

Impaired 13 Impaired 3 16 

Inconspicuous 9 Inconspicuous 9 18 

w/o 

CT 
Total 4 Total 10 - 

τprod, product of median regional time constant and interquartile 

range. w/o, without. 

The τmed, τiqr and the corresponding product τprod were 

significantly correlated with the tobacco consumption (τmed 

R=0.52, P<0.0001; τiqr R=0.42, P<0.001; τprod R=0.54, 

P<0.0001), whereas spirometry parameters were not 

correlated with tobacco consumption.  

4 Conclusions 

In the present study, we demonstrated the feasibility to use 

EIT for screening early lung impairment in “healthy” 

subjects (normal FVC, relatively young and occasional or 

non-smokers). Using follow-up CT as reference, the 

sensitivity of EIT-screening was over 80%. 
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Abstract: Electrical impedance tomography (EIT) is 

promising in the rapid detection of stroke. One famous 

image reconstruction algorithm used the anatomical 

symmetry of the human head to detect stroke lesions, i.e. 

symmetry difference EIT (SDEIT). However, due to the 

distribution complexity of head tissues, SDEIT is 

unsatisfactory. In this study, we proposed a stable SDEIT 

algorithm, in which dual-frequency difference was used to 

eliminate the influence of complex tissues, and an improved 

GREIT method was used to suppress the conductivity 

changes of non-brain tissues in the edge region.  

1 Introduction 

Based on the symmetry of the human head and the 

asymmetry of unilateral stroke, SDEIT for stroke detection 

was proposed [1-2]. In SDEIT, the asymmetric stroke 

lesion is supposed to be detected, by subtracting the 

conductivity distribution on the left side of the head from 

the right one. However, the head is not perfectly 

symmetrical, especially for non-brain tissues, such as the 

skull with low conductivity and its adjacent cerebrospinal 

fluid (CSF) with high conductivity. The slight asymmetry 

can cause significant artifacts in the images from SDEIT, 

which results in great difficulty in identifying stroke lesions. 

Therefore, a novel stable SDEIT algorithm is proposed to 

eliminate the influence of non-brain tissues in this study. 

2 Methods 

2.1 Symmetry difference EIT 

Normally, the conductivity distribution on the left side of 

the human head is symmetrical to that on the right side, 

while for stroke patients, stroke lesions can break this 

symmetry [1]. The conductivity distribution σs, which is 

symmetric with the current conductivity distribution σ, is 

taken as the reference conductivity σr. The difference 

between σ and σr is estimated to reconstruct the image of 

the asymmetric conductivity distribution on both sides of 

the head. 

2.2 Dual-frequency difference 

The conductivity of head tissues at two frequencies of 10Hz 

and 50.1Hz is shown in Tab. 1. 

The SDEIT images with current stimulation frequencies 

of 10Hz and 50.1Hz were calculated respectively, and 

subsequently subtracted one from the other to get the dual-

frequency symmetry difference (DFSD): 

 �̂�𝑓 = 𝑅 ∙ (𝑉𝑓 − 𝑉𝑠
𝑓

) ≈ 𝜎𝑓 − 𝜎𝑠
𝑓
 (1) 

 

�̂�𝑓1
− �̂�𝑓2

≈  (𝜎𝑓1 − 𝜎𝑠
𝑓1) − (𝜎𝑓2 − 𝜎𝑠

𝑓2)

 ≈  (𝜎𝑓1 − 𝜎𝑓2) − (𝜎𝑠
𝑓1 − 𝜎𝑠

𝑓2)

 ≈    ∆𝜎𝑓 − ∆𝜎𝑠
𝑓

                          

 (2) 

From formula (2), the DFSD is equivalent to the SDEIT 

of frequency difference conductivity distribution, and the 

frequency difference conductivity distribution eliminates 

the tissue difference between the skull and CSF (Tab. 1). 

2.3 Edge region changes suppression 

The Graz consensus reconstruction algorithm for EIT 

(GREIT) is a data-driven EIT algorithm, and its key is to 

map the training data to the desired image [3]. We set the 

desired image of the training data in the edge region to 0 in 

calculating the reconstruction matrix to realize the edge 

region changes suppression (ERCS). 

Finally, DFSD eliminated the tissue differences 

between the skull and CSF, and ERCS eliminated the 

differences between the scalp and adjacent tissues. The 

result is shown in Fig. 1. 

 
Figure 1: The imaging result of bleed and ischemic lesion.  

3 Conclusions 

A stable head symmetry difference imaging algorithm with 

the strategies of dual-frequency difference and edge region 

changes suppression was proposed to detect stroke. 
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Table 1: Conductivity of human head tissues at 10 Hz and 50.1 Hz 

Frequency 
Conductivity (S/m) 

scalp skull CSF brain bleed clot 

10 Hz 0.230 0.012 3 1.75 0.188 0.56 0.06 

50.1 Hz 0.245 0.012 3 1.75 0.210 0.56 0.15 

Δσf −0.015 0 0 −0.022 0 −0.090 

Δσf: The difference between the conductivity of each tissue at two frequencies of 10 Hz and 50.1 Hz 

Lesion SDEIT(10Hz) SDEIT(50.1Hz) DFSD DFSD + ERCS 
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Abstract: Bronchoalveolar lavage (BAL) often results in 

hypoxemia. We used electrical impedance tomography 

(EIT) to monitor patients undergoing general anesthesia 

soft bronchoscopy, and found that BAL increased ventral 

ventilation and ventilation defects, ΔDefect score and 

ΔCOV showed a linear correlation with BAL. 

Introduction 

BAL induces alveolar surfactant loss [1], intrapulmonary 

tidal volume decline [2], ventilation perfusion mismatch 

and other comorbidities [3, 4], especially in critical 

patients.3 We aimed to explore the regional ventilation 

changes and identify the most sensitive BAL parameters to 

improve the safety of bronchoscopy. 

1 Methods 

Patients who underwent general anesthesia soft 

bronchoscopy were screened to non-BAL or BAL groups. 

The EIT parameters of regional ventilation delay (RVD), 

changes in end-expiratory lung impedance (ΔEELI), center 

of ventilation (COV), global inhomogeneity index (GI) and 

defect score at perioperative period were recorded by 

Draeger PulmoVista 500 and analyzed offline (T1, before 

bronchoscopy; T2 for non-BAL: 10 minutes after 

bronchoscopy; T2 for BAL: at last alveolar lavage; T3, the 

2nd respiratory point after the end of the bronchoscopy 

operation; T4, after the tracheal tube was removed). 

Generalized linear models and multiple linear regression 

analysis were used to compare the parameters between and 

within groups and determine their correlation with lavage.  

2 Results 

A total of 85 patients were included in the study. Among 

these patients, 14 were in non-BAL group and 71 were in 

BAL group. The BAL group had significantly higher 

Defect score (P=0.022) and COV (P=0.032) than non-BAL 

group. In BAL group, COV moved to the ventral side 

[46.60 (40.50–51.50) vs. 42.80 (37.90–48.10), P<0.001] 

and Defect score increased [2.00 (1.00–3.00) vs. 3.00 

(1.50–4.00), P<0.001] compared BAL (T2) with before 

BAL (T1), and only Defect score was continually affected 

at after BAL (T3) and after removing the tracheal tube (T4). 

Defect score and COV increment from T2 to T1 (ΔDefect 

score, ΔCOV) respectively showed a linear correlation with 

BAL (β=0.355, 95%CI:0.586–2.240, P=0.001; β=-6.816, 

95%CI: -10.305–-3.327, P<0.001). 

Table 1: For the comparison of parameters between the two 

groups, Defect score and COV had significantly higher Defect 

score and COV than non-BAL group. 
 β 95%CI P 

Defect score    

BAL 0.539 0.077- 1.001 0.022 

Airway stenosis 0.817 0.459- 1.175 <0.001 

BAL* Airway stenosis 0.293 -0.855- 1.441 0.616 

COV    

BAL -2.870 -5.494- -0.245 0.032 

Airway stenosis 1.912 -0.124- 3.948 0.066 

BAL* Airway stenosis -1.575 -0.809- 4.949 0.635 

 

 

Figure 1: Comparative analysis of parameters at each time point 

in the BAL group. *P <0.05 compared with T1 in the same group; 

†p <0.05 compared with T2 in the same group; ‡p <0.05 compared 

with T3 in the same group. 

Table 2: The linear correlation between BAL, Defect score and 

COV increment from T2 to T1 (ΔDefect score, ΔCOV) 

 β 95%CI P 

ΔDefect score    

BAL 0.355 0.586-2.240 0.001 

Airway stenosis 0.116 -0.295-1.037 0.271 

ΔCOV    

BAL -6.816 -10.305- 3.327 <0.001 

Airway stenosis -0.682 -3.491-2.126 0.630 

3  Conclusions 

Defect score and COV has the potential to be a predictive 

EIT parameter for BAL. ΔDefect score and ΔCOV had 

linear correlation with BAL and thus EIT parameter has the 

potential to predict BAL in clinics. 
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Abstract: The paper introduces a miniaturized, high frame 

EIT system for medical application. The system can be used 

for regional lung monitoring in human subjects. The 

preliminary results indicate that the developed high frame 

EIT system has good stability and consistency, and can 

continuously monitor lung ventilation with greater 

temporal resolution.  

1 Introduction 

Electrical impedance tomography (EIT) can reconstruct the 

changes of the admittance or impedance distribution of 

human tissue by injecting currents and measuring their 

boundary voltages [1]. The EIT system is a passive 16-

electrode system, with the main application target for 

pulmonary functions. The EIT acquisition system has a 

compact size of 180mm in length, 150mm in width, and 

30mm in height, with a weight of less than 1kg (Figure 1). 

The tablet provides the interface to facilitate user 

interaction with the EIT system.  

2 Methods 

The EIT system mainly consists of three parts: the field 

programmable gate array (FPGA) control module, the 

current driver, and the signal acquisition module. The 

FPGA is used for controlling data sampling logic, current 

waveform generation, and TCP communication with the 

tablet. The LTC1668 DAC in the current driver module 

acquires the generated signal via the DDS module, and the 

output current signal of the DAC is converted to a voltage 

signal by current sensing resistor. The voltage signal is 

amplified by an operational amplifier (OA) with 

programmable gain, and then applied to different excitation 

electrodes via the analogue switch matrix. The collected 

signals are first buffered by a voltage follower for 

stabilization, then filtered using an anti-aliasing filter to 

remove high-frequency noise and reduce signal aliasing. 

The analogue to digital interface is implemented using 24-

bit analogue to digital converter ADS1675 ADC. The 

collected discrete sinusoidal data is transmitted via TCP to 

a tablet for post-processing, with data rate of 2 Mbps. 

 
Figure 1: The high frame EIT system. 

The current injection frequency range of the system 

supports 50~250kHz, with the current amplitude ranging 

from 0.1mA to 5mA rms. The current drive complies with 

the IEC 60601-1 standard. The system performance was 

tested on a 50 Ω 0.1% precision resistor network, achieving 

a signal-to-noise ratio of 80 dB for the current source over 

continuous measurements lasting 3 hours. 

The scan pattern of the EIT system is fully 

programmable, supporting multiple excitation and 

measurement modes. The frame rate of the EIT system is 

primarily determined by the sample window per 

measurement and the speed of channel switching. With the 

analogue switch switching speed of 200 ns and the signal 

stabilizing quickly after switching, during post-processing, 

only the first period needs to be discarded. Using the 16-

electrode protocol for adjacent excitation [2] at 125kHz 

frequency, with difference imaging based on one-step 

Gauss-Newton algorithm or GREIT method [3, 4], the 

system can achieve an actual imaging frame rate of 100 fps.  

 
Figure 2: Reconstruction image of the respiratory cycle, 

(a) Image starting from the end of expiration, (b) Image 

starting from the end of inspiration. 

3 Results 

Lung imaging was performed on a 28-year-old healthy 

male subject. The iterative Gauss-Newton method is used 

for image reconstruction in Figure 2, selecting data from the 

end of inspiration or expiration as reference frames for 

inversion to obtain changes in conductivity. 

4 Conclusions 

This article introduces the EIT system, which can provide 

high frame rate dynamic lung imaging monitoring. The 

system features a compact design, making it portable. It can 

dynamically display imaging results on a tablet, allowing 

for interactive human-computer interaction via touchscreen. 
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Abstract: The aim of this physiological study was to
further elucidate the longitudinal effect of PP on regional
ventilation-perfusion matching and distribution of
ventilation and perfusion in COVID-19-associated ARDS
patients, utilizing contrast-enhanced EIT.

1 Introduction

Contrast-enhanced electrical impedance tomography (EIT)
has emerged as a valuable instrument for bedside
monitoring of pulmonary ventilation and perfusion [1]. It
has furnished crucial insight into the physiological
mechanisms that underpin the oxygenation responses to
prone position (PP) in patients with acute respiratory
distress syndrome (ARDS) [2]. Nonetheless, the impact of
PP duration on the alterations of ventilation and perfusion
remains unclear.

2 Methods

This study analyzed COVID-19 ARDS patients who were
mechanically ventilated and undergone PP treatment. EIT
evaluations and PaO2/FiO2 measurements were performed
at five distinct time points during the initial PP session:
prior to the initiation of PP while in the supine position
(SP), 1h post-PP (PP1), 3hs post-PP (PP3), at the end of
PP (PP16), and 3h subsequent to reverting to the supine
position (RE-SP3).

3 Results

This study enrolled 18 patients with ARDS induced by
COVID-19. When comparing PP to SP, PP led to
significant improvements in oxygenation. The PaO2/FiO2
showed a consistent increase at each evaluated PP time
point (127.22± 34.29 vs.166.22± 58.66 vs. 196.74±
75.72 vs.211.39± 82.06 vs. 139.00± 45.12 mmHg, P
<.001), reaching its peak at PP16.

Figure 1. Evolution of PaO2/FiO2(%) within the same session.*
vs. SP, p < 0.05, † vs. PP1, p < 0.05, ‡vs. RE-SP 3, p < 0.05.

When compared with SP, dorsal ventilation increased
significantly at PP1 (P< 0.05), and continued to change

throughout the duration of PP, with a higher percentage of
dorsal ventilation at PP16 than PP1 (P<.001).

Dorsal and ventral perfusion distribution remained
unchanged during the initial three hours of PP, but dorsal
perfusion increased significantly at PP16. Ventilation and
perfusion returned to their baseline levels at RE-SP3.

Figure 2. Comparisons
of global, ventral and
dorsal Matched Region
(%), Dead Space-EIT (%)
and Shunt-EIT (%)
within the same session.

In comparison to SP, there was a significant increase in
global V/Q matching and a decrease in Dead space-EIT
(%) at PP3, primarily occurring in dorsal area. Dorsal
shunt-EIT (%) decreased over the PP period.

4 Conclusions

In patients with ARDS induced by COVID-19, the early
improvement of oxygenation and global V/Q matching
observed during PP was primarily attributed to the
immediate and early alterations in ventilation distribution,
which decreased dead space and persisted into the late
stages. However, changes in perfusion only became
apparent at a later stage of PP, contributing to further
improvements in oxygenation and global V/Q matching.
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Abstract: A 3D Electrical Impedance Tomography (EIT) 

algorithm based on Dimensional Grey Wolf Optimization 

(DGWO) algorithm is proposed for reconstructing 3D 

images of breast tumours, overcomes the inherent defects 

of 3D EIT with high shape sensitivity and position 

sensitivity. Simulation result shows that DGWO algorithm 

outperforms traditional algorithm and improves the image 

correlation coefficient. The proposed algorithm is 

expected to be applied to the clinical detection of breast 

tumour. 

1 Introduction 

Breast cancer is one of the most common malignant 

tumours in women worldwide. However, most current 

studies are limited to two-dimensional cross-sectional 

imaging without information on tumour depth, which is 

eager to induce under-diagnosis in practice [1]. Therefore, 

a high-precision 3D imaging algorithm is required. 

2 Methods 

Figure 1 shows the flowchart of Dimensional Grey Wolf 

Optimization (DGWO) algorithm for solving the EIT 

inverse problem, which consists of four steps [2].  

In step 1: a sensitivity matrix is constructed by solving 

the forward problem. In step 2 and step 3, a relevant 

encoding and decoding method based on the Dimensional 

Grey Wolf Optimization algorithm is proposed. In step 4, 

the DGWO algorithm is used to search for the tumour 

conductivity distribution in space which consists of 1) 

constructing a mathematical model of breast tumours, 2) 

solving the model by encoding the algorithmic inputs, and 

3) reducing the obtained results to the desired imaging 

results by decoding. 

3 Result 

3.1 Simulation Model Setting 

Finite element simulations are performed which are 

compared with the combination of Tikhonov and NOSER 

regularization algorithm (TK-NOSER) in this study. 

Image correlation coefficient IC are used as evaluation 

metric which is calculated as follows: 

 
2 2

0 0 0 0( ) ( )T

CI  =  − −  − −σ σ σ σ σ σ σ σ  (1) 

3.2 Simulation result 

Figure 2 shows the image reconstruction and numerical 

evaluation results. By optimizing the angle-based fitting 

function f(Δσ) (Step 4-1) and searching the solution space 

in position and shape direction individually (Step 4-2), 

DGWO reaches a better performance of edge target. 

4 Conclusion 

The proposed algorithm can better express the shape 

characteristics of target in comparison with TK-NOSER 

algorithm. Particularly, in the case of target being located 

in edge position, the advantage of the DGWO algorithm is 

more obvious.  
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Note: m - the number of individuals in the grey wolf population; 

maxiter - the maximum number of iterations. 

Figure 1: Flowchart of DGWO solving the inverse problem.   
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Figure 2: Simulation result 
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Abstract: Our study focuses on Bayesian inference and
uncertainty quantification for Electrical Impedance Tomography
(EIT) image reconstruction. We propose a split Gibbs sampler
that utilizes a score-based diffusion model and Laplace
approximation to sample from the two sub-posterior distributions.
We conduct various numerical and visual experiments to
demonstrate that the proposed method leads to considerably
superior reconstructions and lower uncertainty compared to
state-of-the-art methods.

1 Introduction
Electrical Impedance Tomography (EIT) reconstructs inner
conductivity from boundary voltages [1]. Bayesian methods
offer uncertainty quantification, enhancing diagnostics [2].
Recent focus shifted to full posterior distribution computation [3].
We propose an enhanced Split Gibbs Sampler (SGS) to address
EIT's computational challenges. Our Bayesian framework
integrates numerical sub-sampling strategies, aiming for accurate
and reliable EIT reconstructions.

2 Methods
In EIT image reconstruction, we use � to represent voltage
observations and � to represent the conductivity we are interested
in. With the finite element method, we can define a mapping
�: ��� → ��� representing the discrete version of the forward
operator

� = �(�) + � , �~�(0, �2�)
Hence, if we assume a prior for � as

�(�) ∝ ���{ − �(�)}
the posterior probability can be expressed as

�(�|�) ∝ ���{ −
1

2�2 ||� − �(�)||2 − �(�)}

= ���{ − �(�, �) − �(�)}
SGS introduces an auxiliary variable � which leads to an
augment distribution

�(�, �|�; �2) ∝ ���{ − �(�, �) − �(�) −
1

2�2 ||� − �||2}

and then partitions the augment distribution into likelihood and
prior components

�(�|�, �; �2) ∝ ���{ − �(�, �) − 1
2�2 ||� − �||2} (1)

�(�|�; �2) ∝ ���{ − �(�) − 1
2�2 ||� − �||2} (2)

where γ is a positive parameter that controls the coupling
between � and � . We iteratively samples from these
approximations to obtain theoretically accurate samples. For
distribution (1) Laplace approximation is applied to model it as a
Gaussian distribution. For distribution (2) we use diffusion
models as a denoiser to obtain the estimation of score of prior,
whose logarithm is −� . The score can be learned by a neural
network and represented by the result of the denoiser
simultaneously.

��(�) = 1
1−��(�)

( ��(�)��������(�) − �)
where ��(�) is a predefined parameter in diffusion models and
��(�) is the estimated score.

2.1 Figures and tables

In the analysis of EIT image reconstruction results, after
sampling posterior samples using SGS, we calculate the average,
std (standard deviation), and 90% credibility interval of the
posterior samples to quantify the uncertainty of the
reconstruction. The results are shown in Figure 1. Furthermore,
by computing the MSE (Mean Squared Error) and SSIM
(Structural Similarity Index Measure) between the average of
posterior samples and the ground truth, we compare the
effectiveness of the proposed method with other sampling
methods (such as RTO-MH).

Figure 1: Sampling results of proposed method , which
sequentially display the ground truth, followed by the average,
standard deviation, and 90% credibility interval of the samples.

3 Conclusions
Through experimentation, we demonstrate superior accuracy and
stability compared to conventional techniques like Random Than
Optimize-Metropolis Hastings (RTO-MH), especially in
complex sample regions. Specifically, the PnP Split Gibbs
sampler exhibits superior performance, demonstrating better
stability and accuracy, particularly in challenging scenarios. This
underscores the effectiveness of our proposed methods in
tackling nonlinear ill-posed inverse problems like EIT.
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Table 1: Comparison of MSE and SSIM.
1 anomaly 2 anomalies 3 anomalies 4 anomalies

MSE Proposed method �. �� × ��−� �. �� × ��−� �. �� × ��−� �. �� × ��−�

RTO-MH 1.07 × 10−3 2.75 × 10−3 2.56 × 10−3 5.90 × 10−3

SSIM Proposed method �. �� �. �� �. �� �. ��
RTO-MH 0.72 0.82 0.81 0.80
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Abstract: Outer space operations can lead to problems 

such as muscle loss and abnormal body fluids. Therefore, a 

monitoring system for electrical changes of calf muscles is 

proposed. The response of spatial-mean conductivity σ to 

muscle physiological changes after different days of muscle 

training was investigated. Results of the study demonstrates 

that σ exhibits a high sensitivity to muscle physiological 

changes. What’s more, the bio-impedance curve measured 

at different lactate concentrations can also effectively 

reflect the fatigue of subject's muscles. 

1 Introduction 

When astronauts perform space operation tasks, they will 

encounter abnormal conditions such as loss of muscle 

atrophy and disruption of humoral system due to effects of 

complex radiation and microgravity in space [1]. The 

prolonged abnormal state will result in the attenuation of 

astronauts' strength and the chaos of their immune system, 

even endangering their lives. Therefore, there is an urgent 

need for a real-time and non-invasive method that can 

quantitatively assess muscle status of astronauts.  

Electrical Impedance Tomography (EIT), as a method 

for real-time portable functional imaging, has been widely 

used in biomedical detection recent years. In this work, a 

real-time monitoring system for physiological condition of 

human calf muscles based on Recurrent Neural Networks 

(RNN) is proposed [2]. 

2 Methods 

Figure 1 shows the EIT system, which consists of a sensor 

module, an excitation/acquisition module, and an image 

reconstruction module. 

In addition, researchers randomly selected two pairs of 

opposing electrodes and measured the bio-impedance curve 

of sink model at different lactate concentrations. Impedance 

curve can also reflect the fatigue of calf muscles. 

3 Results 

To evaluate the effects of rehabilitation training, 

researchers designed a 14-day experiment. Subjects' initial 

impedance data was recorded in advance. Then, 1-hour 

long-distance running and 1,000 heel lifts were performed 

every day to fully exercise calf muscles. After daily training, 

impedance data of subjects' calf muscles was measured in 

the same way, and spatial-mean conductivity σ was 

calculated. Finally, changes of σ during the experiments 

were plotted. To assess muscle fatigue levels, we simulated 

the process of human muscle fatigue by adding different 

numbers of lactic acid drops to the sink. Bio-impedance was 

used to measure the global impedance of sink model. 

As shown in Fig. 2, Electrical Characteristic Responses 

(ECR) of M1 and M2 muscle compartments changed 

significantly under different days of calf muscle training. 

Spatial-mean conductivity σ reflects overall performance of 

human calf muscles, increasing with the number of training 

days of the subjects. It can be concluded that the internal 

changes inside muscles are mainly related to lactate 

concentration, intracellular and muscle fiber growth. 

Among them, lactate concentration can highly represent the 

effectiveness of muscle training. 

Figure 3 simulates the process of muscle fatigue by 

dripping different amounts of pure lactic acid solution. As 

the concentration of lactic acid increases, conductivity of 

sink model also increases, and the radius of circle in 

Nyquist plot decreases accordingly. 

4 Conclusions 

In conclusion, this study confirms the ability of EIT 

for muscle training monitoring and gives a method to 

prevent muscle fatigue damage. 

 
Figure 1: EIT experimental system diagram. 

 
Figure 2: Image reconstructions of calf muscle after 

different days of muscle training. 

 
Figure 3: Experimental results of distinguishing calf 

muscle fatigue. 
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Abstract: After lung transplantation, patients usually 

require postoperative care in ICU. Therefore, monitoring 

the graft’s pulmonary function is one of the most 

concerning issues. EIT is a non-invasive, and real-time 

imaging tool. Ventilatory ratio is a bedside indicator of 

pulmonary ventilation disorders. We included 21 lung 

transplant recipients who admitted to the ICU after 

surgery. Bland-Altman analysis and Pearson’s correlation 

analysis were used to comparison. We found that EIT-

estimating dead space fraction was in good consistency 

with ventilator measurements and was positively 

correlated with ventilatory ratio. 

1 Introduction 

After lung transplantation, patients usually require 

postoperative care and mechanical ventilation in an 

intensive care unit (ICU). Therefore, one of the most 

concerning issues for physicians is monitoring the graft’s 

pulmonary ventilation and perfusion function [1]. 

Electrical impedance tomography (EIT) is a radiation-free, 

non-invasive, and real-time imaging tool [2]. This study 

aims to compare the pulmonary dead space fraction based 

on electrical impedance tomography, blood gas, and 

ventilators in lung transplant recipients. 

2 Methods 

The study included the lung transplant recipients who 

admitted to the ICU after surgery in the First Affiliated 

Hospital, Zhejiang University School of Medicine. This 

study was approved by the clinical research ethics 

committee. We performed EIT for the evaluation in 

ventilation and profusion. An EIT belt was placed at the 

4th intercostal space level around the patient’s chest wall. 

During an expiratory hold for at least 8 seconds, a bolus of 

10 mL of 10% NaCl was injected through the central 

venous catheter. In the EIT images, EIT-based ventilated 

and perfused regions were determined with 20% of the 

maximum pixel value as the threshold. Dead space was 

defined as the percentage of the area that was only EIT-

based ventilated globally [3].  

 𝑉𝑘 > 20% × max(𝑉𝐾) , 𝐾 ∈ 𝑙𝑢𝑛𝑔 (1) 

 𝑃𝑔 > 20% × max(𝑉𝐺) , 𝐺 ∈ 𝑙𝑢𝑛𝑔 (2) 

 EIT − Dead Space =
𝑅𝑉

(𝑅𝑉 + 𝑅𝑃 + 𝑅𝑉+𝑃)
 (3) 

Ventilatory ratio (VR) is an easily accessible bedside 

ndicator of pulmonary ventilation disorders. The formula 

for calculating VR was shown in Equation (4). Based on 

the Enghoff-Bohr equation, the dead space fraction for 

arterial blood gas (C-VD/VT) was calculated as follows. 

The V-VD/VT was measured in the ventilator device. 

Bland-Altman analysis was used to test the consistency of 

the three methods of calculating the dead space. 

 𝑉𝑅 =
𝑀𝑉 × 𝑃𝑎𝐶𝑂2

𝑃𝐵𝑊 × 100 × 37.5
 (4) 

 

 𝐶 − 𝑉𝐷/𝑉𝑇 =
𝑃𝑎𝐶𝑂2 − 𝐸𝑇𝐶𝑂2

𝑃𝑎𝐶𝑂2

 (5) 

 

3 Results 

The study included 21 patients who met the inclusion 

criteria. We performed EIT ventilation and perfusion 

monitoring within 24 hours of the first admission to the 

ICU for these lung transplant recipients, recording 

parameters such as the most recent arterial blood gas and 

ventilator settings at the time of the EIT procedure to 

calculate the variables. 
Bland-Altman analysis 

 
Figure 1. The line graph includes Means and 95% 

confidence interval (CI) in three dead space calculation. 

 
Figure 2. Bland-Altman analysis.  

 
Figure 3. Bland-Altman plots in three dead space 

calculation. 

Pearson’s correlation analysis 

 
Figure 4. Pearson’s correlation analysis. 

4 Conclusions 

In this study, EIT-estimating dead space fraction was in 

good consistency with ventilator measurements and was 

positively correlated with VR. 
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Abstract: A Lagrange Multiplier reconstruction method 
has previously been shown to provide some advantages in 
terms of producing image even with loss of some boundary 
data, however, it was limited to circular domains. We 
present an adaption of this method for adult human chest. 
The results of the reconstruction are compared with Gauss-
Newton reconstruction method. 

1 Introduction 

The motivation behind this study was to create a fast, 
reliable algorithm which could be applied in practical 
situations without the necessity of adjusting hyper 
parameters to achieve an interpretable reconstructed image. 

We are also exploring whether the Lagrange Multiplier 
approach could be a method that would enable 
reconstruction even if a segment of the boundary data has 
been lost during data collection on patients. 

In EIT the gradient boundary potentials are distributed 
along the curved equipotential lines at each current 
injection. Whilst these borderlines can be mathematically 
calculated via conformal mapping when the domain is 
circular, such lines are not easy to formulate for irregular 
shapes like an adult thorax.  We have approached this by 
estimating these paths numerically using FEM, However, 
this in turn would be adding the dependency to how fine the 
applied mesh is able to resolve these paths. Here, a 
rectangular grid model of 64x64 pixels has been chosen and 
applied to both reconstruction methods in order to null out 
the effect of this issue on the results. 

2 Methods 

Assuming a resistivity image 𝜌𝜌(𝑥𝑥,𝑦𝑦) the following 
minimization problem can be defined via considering a 
variance model for the resistivity image [1]: 

ℂ = �
1
2
𝜌𝜌(𝑥𝑥,𝑦𝑦)2𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 (1) 

subject to the following boundary constraints:  

𝑔𝑔𝑘𝑘𝑘𝑘 = � � 𝜌𝜌(𝑥𝑥, 𝑦𝑦)𝜎𝜎𝑘𝑘(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝜇𝜇𝑘𝑘𝑘𝑘𝑑𝑑𝜔𝜔𝑘𝑘𝑘𝑘

𝜇𝜇𝑖𝑖+1

𝜇𝜇𝑖𝑖

𝐵𝐵(𝜔𝜔𝑘𝑘𝑖𝑖)

𝐴𝐴(𝜔𝜔𝑘𝑘𝑖𝑖)
 (2) 

where 𝑔𝑔𝑘𝑘𝑘𝑘 is the normalized boundary potential measured 
at the kth projection and the ith measurement. Whereas 𝜎𝜎𝑘𝑘 
represents the weighted current density on equipotential 
strip kith. Lagrange multipliers can help integrate the 
constraints into the optimization problem: 

ℂ = �𝐶𝐶(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 +   

��  𝜆𝜆𝑘𝑘  �𝑔𝑔𝑘𝑘𝑘𝑘 − � 𝜌𝜌(𝑥𝑥,𝑦𝑦)𝜎𝜎𝑘𝑘𝑑𝑑𝜇𝜇𝑘𝑘𝑘𝑘
𝐵𝐵(𝜔𝜔𝑘𝑘𝑖𝑖)

𝐴𝐴(𝜔𝜔𝑘𝑘𝑖𝑖)
�

𝑁𝑁

𝑘𝑘=1

𝑑𝑑𝜔𝜔𝑘𝑘𝑘𝑘  
(3) 

with 𝜆𝜆𝑘𝑘 indicating continuous 1D Lagrange multipliers at 
projection k. Solving (3) via taking derivatives with respect 
to 𝜌𝜌(𝑥𝑥, 𝑦𝑦), the resistivity image can be found: 

𝜌𝜌(𝑥𝑥,𝑦𝑦) = �𝜆𝜆𝑘𝑘  
𝑁𝑁

𝑘𝑘=1

𝜎𝜎𝑘𝑘 (4) 

Inserting (4) into (2) the linear equation to find the unknown 
multipliers gives: 

𝑔𝑔𝑘𝑘𝑘𝑘 = � � �𝜆𝜆𝑛𝑛 
𝑁𝑁

n=1

𝜎𝜎𝑛𝑛(𝑥𝑥, 𝑦𝑦)𝜎𝜎𝑘𝑘(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝜇𝜇𝑘𝑘𝑘𝑘𝑑𝑑𝜔𝜔𝑘𝑘𝑘𝑘

𝜇𝜇𝑖𝑖+1

𝜇𝜇𝑖𝑖

𝐵𝐵(𝜔𝜔𝑘𝑘𝑖𝑖)

𝐴𝐴(𝜔𝜔𝑘𝑘𝑖𝑖)
 (5) 

3 Results 

A 16 array of electrodes were used for both the simulations 
and to collect human data. An adjacent current pattern was 
used given 208 measurements. The simulated voltages were 
generated by introducing two objects with half of the 
conductivity of the background at 3.5 cm far from the origin 
with an extra 10% noise on the data, whereas the human 
data were collected using stick on ECG electrodes equally 
spaced around the thorax at the level beneath the nipple line 
mark. The subject was a healthy male at 40 years of age. 
The resistivity change within a tidal breath is plotted by 
selecting the frames corresponding to the beginning and 
end of an expiration.  The overlaid lung contours have been 
drawn according to the MRI scans of the subject in order to 
present a measure of the spatial accuracy of the 
reconstructed images. 

  

  
Figure 1: Left panels reconstructed using Lagrange multipliers 
whereas right column was created via one-step Gauss-Newton 
with hyperparameters as 1e-3 and 1e-4 respectively. 

4 Conclusions 

The accuracy at localizing the objects, (circle centers on top 
row and lungs at the bottom) which becomes significant 
when computing clinical parameters dependent on a 
predefined region of interest (ex. silent spaces), in addition 
to no requirement for hyperparameter adjustment during 
image reconstruction, make this method a suitable 
candidate for chest EIT. 
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Abstract: The inverse problem of 3D dynamic-EIT shows 
serious ill-posedness and indeterminateness, while the 
real-time information is not considered in the continuous 
reconstruction methods. To address the abovementioned 
inferiority of the dynamic EIT, a low-rank plus sparse 
(L+S) imaging algorithm is proposed. In specific, the 
reconstruction task is split into background recovery and 
dynamic components enhancement. nuclear norm and l₁-
norm are implemented for low-rank information constraint 
and sparse structure representation, respectively. The 
reconstructions show that the L+S model has good 
performance in representing the conductivity distributions 
concerning the time variation and 3D structure of lung 
respiration. 

1 Introduction 

The time-dynamic 3D EIT is a promotional imaging 
modality in medical applications, which could 
demonstrate the expensive anatomical and time-various 
features in lung respiration. According to [1], the non-
obvious changed conductivities show low-rank 
characteristics in the observation domain, while the 
electrical parameters of the lungs exhibit rapid changes in 
the respiration process corresponding to sparse features. In 
this paper, we propose a low-rank plus sparse (L+S) 
imaging method for reconstructing the temporal-wise 
conductivities and spatial-wise lung structure features 
simultaneously. The numerical experiments show that the 
proposed scheme can significantly improve the 3D 
dynamic EIT reconstruction. 

2 Methods 

The image reconstruction of the EIT inverse problem 
shows an ill-posed nature [2], which could be simply 
solved utilizing the regularization constraint. This problem 
could be transferred as an optimization framework, which 
is described as: 

�
𝑚𝑚𝑚𝑚𝑚𝑚 1

2
‖𝒥𝒥∆𝜎𝜎 − ∆𝑉𝑉‖22 + 𝑅𝑅(∆𝜎𝜎) 

∆𝜎𝜎 = (∆𝜎𝜎1,∆𝜎𝜎2, … ,∆𝜎𝜎𝑗𝑗)
    𝑗𝑗 = 1,2, … , 𝑡𝑡    (1) 

Here, 𝒥𝒥  is sensitivity matrix, ∆𝜎𝜎  is the time-differential 
conductivity matrix., ∆𝑉𝑉  represents the time-differential 
voltages. ∆𝜎𝜎𝑗𝑗 = 𝜎𝜎𝑗𝑗-𝜎𝜎0 is the difference in conductivity at 
different moments in time. 

The reconstruction problem Eq. (1) is performed by 
solving the following minimization problem described as 
Eq. (2): 

   𝑚𝑚𝑚𝑚𝑚𝑚‖𝐿𝐿‖∗ + 𝜆𝜆‖𝑇𝑇𝑇𝑇‖1      𝑠𝑠. 𝑡𝑡.   ∆𝜎𝜎 = 𝐿𝐿 + 𝑇𝑇          (2) 

where, ‖𝐿𝐿‖∗ is the nuclear norm of the matrix L, ‖𝑇𝑇𝑇𝑇‖1 is 
𝑙𝑙1-norm of the matrix S after the sparse transformation T. 
𝜆𝜆 is tuning parameter. 

Based on Eq. (1) and (2), the optimization problem can 
be rewritten as a relaxed constrain problem with the 
hybrid regularization pattern, which is demonstrated as: 

𝑚𝑚𝑚𝑚𝑚𝑚 1
2
‖𝒥𝒥(𝐿𝐿 + 𝑇𝑇) − ∆𝑉𝑉‖22 + 𝜆𝜆𝐿𝐿‖𝐿𝐿‖∗ + 𝜆𝜆𝑆𝑆‖𝑇𝑇𝑇𝑇‖1     (3) 

Here, 𝜆𝜆𝐿𝐿 and 𝜆𝜆𝑆𝑆 are the weights of the regularisation terms, 
we approximate the optimal solution step by step by the 
following iterative process: 

�
𝐿𝐿𝑘𝑘 = 𝑇𝑇𝑉𝑉𝑇𝑇𝜆𝜆𝐿𝐿(∆𝜎𝜎𝑘𝑘−1 − 𝑇𝑇𝑘𝑘−1)

𝑇𝑇𝑘𝑘 = 𝑇𝑇−1(Λ𝜆𝜆𝑆𝑆(𝑇𝑇(∆𝜎𝜎𝑘𝑘−1 − 𝐿𝐿𝑘𝑘−1)))
∆𝜎𝜎𝑘𝑘 = 𝐿𝐿𝑘𝑘 + 𝑇𝑇𝑘𝑘 − 𝒥𝒥𝑇𝑇 ∗ (𝒥𝒥(𝐿𝐿𝑘𝑘 + 𝑇𝑇𝑘𝑘) − 𝑉𝑉)

       (4) 

Λ𝜆𝜆 is the soft threshold function, (Λ𝜆𝜆(𝑥𝑥) = 𝑥𝑥
|𝑥𝑥|

max (|𝑥𝑥| −
𝜆𝜆, 0) and SVT is the singular value threshold. For the lung 
respiration data, we set up 30 iterations to process the 
continuous respiration moments. 

3 Conclusions 

We demonstrate four states of expiration using 
simulation models, and the reconstructions are shown in 
Fig. 1. The method can effectively reconstruct the 
conductivity distribution corresponding to the respiratory 
states (𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4) at different moments relative to the 
conjugate gradient algorithm.  

 
Figure1: Results of 3D lung respiratory reconstruction 

The reconstructed image quality metrics (RMSE and 
SSIM) are shown in Table 1. It can be concluded that the 
L+S method can be effectively applied to the study of 
dynamic 3D EIT and provides a new monitoring method 
for practical clinical applications. 
Table 1: The reconstructed image quality metrics 

Metrics 𝑡𝑡1 𝑡𝑡2 𝑡𝑡3 𝑡𝑡4 
RMSE(CGLS) 0.716 0.689 0.687 0.683 
RMSE(LplusS) 0.485 0.483 0.464 0.463 
SSIM(CGLS) 0.513 0.547 0.552 0.558 
SSIM(LplusS) 0.738 0.740 0.775 0.787 
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Abstract: An endoscopic Convex Electrical Impedance 

Tomography (cEIT) Sensor for early gastric cancer 

Identification is proposed. Experimental results shows that 

cEIT sensors can detect cancer depths up to 46% of wall 

thickness. The average absolute relative difference of 

infiltration depth assessment was 0.18, effectively 

identifying Tis and T1 stage cancers. 

1 Introduction 

Gastrointestinal cancer has always been a daily concern 

for people. Endoscopic cancer detection methods such as 

indocyanine green (ICG) have disadvantages of 

invasiveness, inconvenient detection. Electrical impedance 

tomography (EIT) can detect cancer based on the 

differences in electrical characteristics of tissue lesions. 

Ye et al. designed a flexible EIT sensor with three layers 

of electrodes and achieved 3D EIT imaging through an 

improved U2 Net neural network1. However, the 

combination of soft robots and single con-vex array 

electrodes for 3D EIT of gastric cancer has not been 

studied yet. 

2 cEIT sensor and detection methods 

2.1 cEIT sensor fabrication 

The cEIT sensor consists of two parts: a substrate and a 

convex concentric array electrode, as shown in Figure 2(a). 

A concentric array electrode with a "1+6+9" ring layout 

was fabricated on the surface of FPC. 

 
Figure 2: cEIT sensor for detecting early gastric cancer; (a) the 

fabrication of sensor; (b) cEIT incentives and measurement 

methods; (c) finite element mesh division of cEIT field. 

2.2 The incentive and measurement modes of cEIT 

Figure 2 shows the single electrode excitation and 

acquisition modes of cEIT. Selecting a single electrode in 

sequence for excitation, while collecting the potentials of 

the other electrodes, a total of 15 × 14 = 210 potential 

cycles were obtained. Finally, based on 210 potentials, the 

conductivity distribution in the field is calculated by equal: 
T 1 T( )t nk k −= +  +   Δσ S S I D S ΔV                  (1) 

2.3 cEIT experiment of early gastric cancer 

 
Figure 2: Experimental equipment diagram 

Figure 2 is a schematic diagram of the experimental 

equipment. PC controls the Keysight 34980A gate switch 

to excite the 0.1 mA AC signal from IM3570 to the area 

where the cancer is located. 

 
Figure 3: cEIT of gastric cancer size and location. 

The cEIT experimental results are shown in Figure 7, 

which shows the partial grid in the cEIT reconstructed 

image with a relative conductivity change greater than 0.6. 

The average ICC of cEIT at Pos1 is 0.461, and the average 

ICC of cEIT at Pos2 is 0.624. The maximum depth that 

cEIT sensors can detect is 1.84 mm, which is 46% of the 

wall thickness. 

3 Conclusions 

The cEIT sensor can be applied to early screening of 

gastric cancer, providing a new detection method for in 

vivo and real-time detection of gastric cancer. 
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Abstract: To enhance the sensitivity of magnetic induced 

phase detection signals and quantify hematoma detection, 

a zero-flow sensor was proposed. The uniform primary 

magnetic field and its counteraction were analysed. Phase 

change responses to solutions of varying conductivities 

and rabbits with cerebral haemorrhage were investigated. 

The proposed sensor provides a more sensitive method for 

the quantitative detection of intracranial haemorrhage. 

1 Introduction 

Magnetic induction phase detection technology is a 

promising non-invasive method for cerebral haemorrhage 

(CH) detection. A symmetric cancelation-type sensor [1], 

the Bx-sensor [2] and the gradiometer [3] were proposed 

to improve detection sensitivity by the primary field 

counteraction. Nonetheless, most of these efforts do not 

consider the ununiform and divergent main magnetic field 

in detection area. A zero-flow sensor was proposed to 

better quantify the hematoma and improve the detection 

sensitivity. 

2 Methods 

2.1 Detection principle 

The transmitting coil excited by a sinusoidal signal 

generates the primary magnetic field (B). The receiving 

coil detects the superimposed magnetic field (B+ΔB) and 

transmits this signal to the data processing module which 

calculates the phase difference (Δθ) between the reference 

and detection signals. 

 ∆𝜃 = 𝜃det − 𝜃ref       (1) 

Here, θdet denotes the phase of the detection signal from 

the receiving coil, and θref signifies the phase of the 

reference signal.  

2.2 Design of the sensor 

The sensor model comprised the excitation and detection 

coils. The excitation coil was composed of end-rings 

(ERs), legs and capacitors inserted into the ERs between 

conductive legs. The design details of the excitation coil 

are shown in Table 1. The detection coil with an inner 

diameter of approximately 84 mm was wound using 10 

turns of copper wire (diameter 1mm). In this study, radio 

frequency electronic feedback circuits were constructed to 

match the impedance. The schematic diagram of the 

sensor is presented as Figure 1. 

 
Figure 1: Schematic diagram of the sensor 

2.3 Experimental system 

The function signal generator generated two orthogonal 

sinusoidal signals of equal amplitudes at the same 

frequency. The detection signal was inputted into the NI 

high speed data acquisition card. The self-programmed 

data processing module in LabView was used to perform 

phase difference calculation. 

3 Conclusions 

The uniform primary magnetic field with higher magnetic 

field strength and its counteraction were achieved. The 

experimental results for solutions with different 

conductivities showed that the sensitivities were 2.01, 1.22 

and 6.3 times higher than those for low-pass birdcage coil 

[4], planer gradiometer [3] and co-axil coil, respectively. 

The adjusted R2 of the first-order linear fit with no 

weighting between phase difference and liquid volume 

was 0.98. The linearity was improved than sensors 

mentioned above. The proposed sensor provides a more 

sensitive method for the quantitative detection. 
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Table 1: Details of the excitation coil 

Frequency Legs 

number 

Legs  

length 

Legs  

width 

ERs  

radius 

ERs 

widths 

Thickness Capacitor  

60 MHz 8 80 mm 5mm 80mm 5mm 0.1mm 100 pF 
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Abstract: The electrical characteristics of abdominal 

haemorrhage model is investigated in order to provide a 

preliminarily assessment of the electrical specificity for 

detecting intra-abdominal haemorrhage by electrical 

impedance tomography (EIT). In this study, 100 ml of 

bovine blood is sequentially injected into the abdominal 

cavity phantom in 4 ml increments to mimic sustained intra-

abdominal haemorrhage. A 16-electrode EIT sensor is used 

to investigate the electrical characteristics of the abdominal 

cavity phantom. The results show that the measured target 

impedance values decreased significantly as the blood 

volume increasing in the tissues within the model. 

Significantly, the impedance difference with increasing 

blood volume is most pronounced at a frequency of 430 

kHz. 

1 Introduction 

• Intra-abdominal haemorrhage is typically insidious 

with a lack of continuous bedside monitoring for the 

detection of haemorrhagic events [1]. 

• Electrochemical impedance spectroscopy (EIS) 

allows the detection of the response of electrical 

characteristics of human tissues in different 

physiological conditions [2]. 

1.1 Design of EIS experiment 

 
Figure 1: The data acquisition system. 

Figure 2: The mimicked abdominal cavity phantom. 

Figure 1 shows the data acquisition system, which consists 

of an abdominal cavity phantom, an impedance analyser, a 

multiplexer, and a personal computer. In this study, 16 

electrodes around the abdominal cavity model are excited 

sequentially using the adjacent method, as shown in figure 

2. The sweep frequency is from 100 Hz to 10 MHz. The 

excitation current is 1 mA. Firstly, 4 ml of bovine blood is 

gradually injected into the beef block which mimics the 

spleen until a total volume of the bovine blood reached 48 

ml. Data acquisition is performed after each blood injection. 

Afterwards, the saline water is replaced and the bovine 

blood is gradually injected into the beef block which 

mimics the liver by repeating the above-mentioned steps. 

1.2 Experimental detection method 

EIS is a non-invasive, radiation-free, portable measurement 

method that enables prolonged bedside real-time 

monitoring. In this study, the EIS method is used to 

investigate changes in electrical characteristics caused by 

abdominal haemorrhage by performing frequency sweep 

measurements on an abdominal cavity phantom under 

conditions where different amounts of bovine blood are 

added. Thus, the theoretical and technical basis is provided 

for the detection of abdominal haemorrhage by using EIT. 

2 Results  

Figure 3 shows the relationship between electrical 

impedance value Z and measurement frequency f under 

different blood volume injected into the beef blocks 

mimicing the spleen (figure 3 (a)) and liver (figure 3 (b)). 

The results show that the Z decreased significantly as the 

blood volume increasing in the mimiced spleen and liver. 

Moreover, at a measurement frequency fc = 430 kHz, the Z 

reduction rate reached a maximum with increasing blood 

volume. 

Figure 3: Impedance vs. frequency plot (a) Bovine blood 

injected into the spleen (b) Bovine blood injected into the liver 

3 Conclusions 

EIS allows the detection of changes in electrical 

characteristics within the abdominal cavity phantom 

through the fat and muscle layers.  

The electrical characteristics of the abdominal cavity 

change in response to intra-abdominal haemorrhage. 
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Abstract: The goal of this study is to develop a universal 
method for the construction of finite element models from 
lung CT images. The method is introduced. Experimental 
results show that this method can successfully build FEM 
model from 95% of NSCLC-Radiomics collection from 
The Cancer Imaging Archive (TCIA) without necessitating 
manual intervention. 

1 Introduction 

The construction of a finite element model is an 
indispensable part of most EIT imaging algorithms [1]. 
Researches suggest that precise FEM model contributes to 
the reduction of artifacts and enables a more accurate 
localization of conductivity changes in EIT image [2], 
hence, build FEM model for individual patient became a 
research trend in EIT technique [3]. Furthermore, image 
reconstruction methods based on deep learning relay on 
large amount of FEM models to building up dataset for 
model training [4]. Therefore, a universal method to 
construct FEM model from CT images is highly demanded. 
In this paper, we present a universal lung modelling method 
based on an adaptive thresholding segmentation approach 
coupled with enhanced image morphological processing, to 
efficiently adapts to a wide range of CT images for the 
precise extraction of thoracic and pulmonary contours. The 
modelling method and experimental results are presented.  

2 Methods 

As depicted in Fig.1, the proposed method including 
segmentation, contour extraction, object modelling and 
Mesh generation, in total four steps.  

 
Figure 1: Methodology flow. 

The adaptive threshold segmentation is depicted in 
Equation 1,  

𝐻𝑢 > 0.4 × median (1) 
where 𝑚𝑒𝑑𝑖𝑎𝑛 denotes the median value of Hu below zero 
in the CT images.  
 
Following the initial segmentation processing of CT images, 
morphological operations like erosion and dilation are used 
to repair lung/chest regions and smooth lung/chest 
boundaries. Concurrently, we use the original image as a 
mask to ensure that the processed image retained its original 
shape and boundaries. Chest/lung contour data are then 
extracted by calculating the connected regions of the image, 
then spline interpolation is applied to uniform the intervals 
between neighbouring contour points. The finite element 

mesh is then constructed using the open-source software 
Gmsh [5]. We adjusts the edge lengths of each elements at 
and around the electrodes to attain varying degrees of grid 
uniformity, simultaneously controlling mesh density to 
meet user requirements. The 2D and 3D FEM mesh 
examples are shown in Fig. 2 and Fig. 3 respectively. 

 
Figure 2: 2D FEM meshes. The first row shows non-uniform 
meshes, while the second row shows uniform meshes. In each row, 
from left to right, the mesh density increases.  

 
Figure 3: A 3D FEM meshing. 

3 Conclusions 

This study developed a method with notable versatility to 
generate EIT FEM model from CT images. The dataset 
used in the study is the NSCLC-Radiomics collection from 
The Cancer Imaging Archive (TCIA), which encompasses 
422 subjects of CT scans. The proposed method can 
precisely segment 404 of these CT scans, corresponding to 
a success rate of over 95%. The method is coded with an 
intuitive graphical interface, and accessible on GitHub. 
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Abstract: We transform the 3-D time-difference EIT imag-
ing into a constrained optimization problem. A deep gener-
ative model, trained on a 3-D lung dataset, is used to con-
strain the unknowns through two different functionals. Nu-
merical results demonstrate the algorithm’s effectiveness in
imaging ventilation and pulsatility activities in the thorax.

1 Introduction
EIT image reconstruction is a challenging task due to its ill-
posed nature and it usually requires prior information to im-
prove accuracy [1, 2]. To address this, we recently proposed
a deep generative model-based framework for 3-D time-
difference lung imaging [3]. This framework transforms the
EIT image reconstruction into a constrained optimization
problem, where the unknown conductivity is constrained
by a deep generative model through user-designed relation-
ships. In this paper, we demonstrate the effectiveness of this
framework using two kinds of constraints: one is linear and
the other is based on cross-gradients (CG) functional, for
3-D lung ventilation and pulsatility imaging.

2 Methods
We formulate the EIT difference image reconstruction into
the following constrained minimization problem

argmin
δσ

||J0δσ −∆d||2

s.t. Φ(δσ,D(z)) = 0,
(1)

where J0 is the Jacobian matrix of EIT forward model; δσ
and ∆d are the difference conductivity and difference volt-
age between two time points, respectively; D(z) is a deep
generative model where z is the input latent code.

Here we apply two kinds of constraints:

Φ =

{
∇[δσ −D(z)] (linear)

∇(δσ)×∇(D(z)) (cross− gradients),
(2)

where ∇ and × are the gradient and cross-product oper-
ators, respectively. To solve the above problem, we em-
ployed an optimization scheme in [3] which is based on the
alternating direction method of multipliers (ADMM).

The deep generative model was implemented by a 3-D
variational autoencoder (VAE). The VAE is comprised of
an encoder z = E(x) and a decoder x̂ = D(z), where x
is the input image and x̂ is the decoded image. The train-
ing dataset was constructed by segmenting the lungs from
the CT images of 165 patients. After a data augmentation
process, a total number of 50,040 3-D lung images (no heart
information) were generated for training. After training, the
decoder D(z) was integrated into (1). More details on the
training dataset and VAE architecture can be found in [3].

3 Results
The proposed algorithms was tested using synthetic
data from 3-D lung models and a two-loop excitation-
measurement pattern [3]. We simulated three cases: (1)
ventilation-healthy lungs, (2) pulsatility-healthy lungs, and
(3) pulsatility-left inferior pulmonary embolism. The re-
constructed images and the ground truths are shown in Fig.
1. It can be seen that the algorithm with cross-gradients
constraint was capable of accurately imaging both the lungs
and the heart in healthy and pathological conditions. In con-
trast, the algorithm with linear constraint only succeeded in
reconstructing the lungs since the training dataset only con-
tains the lungs.

Figure 1: Reconstructed images (coronal view) using synthetic
data (20% white Gaussian noise) from three lung models. Blue
arrows indicate defects in lung perfusion. White circles indicate
regions of the reconstructed heart. CG: cross-gradients.

4 Conclusions
When trained using only the lung dataset (no heart infor-
mation), the algorithm with cross-gradients constraint was
able to reconstruct the lungs while preserving the heart at
the same time. It reduces the complexity in dataset con-
struction, and provides a potential choice for both ventila-
tion and pulsatility imaging.

5 Acknowledgements
This work was supported by the National Science Foun-
dation of China (61971263) and the Tsinghua Precision
Medicine Foundation.

References
[1] K Zhang, M Li, F Yang IEEE Transactions on Biomedical Engineer-

ing, 66:2470-2480, 2019
[2] K Zhang, R Guo, M Li IEEE Transactions on Biomedical Engineer-

ing, 68:1360-1369, 2020
[3] K Zhang, L Wang, R Guo IEEE Transactions on Instrumentation and

Measurement, 72:4501212, 2023

71



24th International Conference on Biomedical Applications of Electrical Impedance Tomography (EIT 2024), Hangzhou, China 
 

Comprehensive Dataset for EIT Grounded in Human Physiology 
Zeyi Jiang1, Sirui Qiao1, Huawei Wu2, Shan Xue2, Zhibin Kong3 and Yixin Ma1 

1Shanghai Jiao Tong University, Shanghai, China, y.ma@sjtu.edu.cn 
2The 6th People’ s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China, 

3Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China 
Abstract: Deep-learning has demonstrated superior 
performance in EIT image reconstruction. The most 
significant challenge of these methods is the requirements 
of vast datasets for model training, while the acquisition of 
large-sets of in vivo data is not convenient. In this study, 
we establish an EIT dataset from CT scans, to support 
large, static/dynamic, and multi-frequency EIT AI 
algorithms. The method and the results are presented. 

1 Introduction 

Deep learning significantly enhances medical tomographic 
images, especially with SOTA AI models. But it heavily 
depends on the quality of datasets. Large-scale EIT 
datasets based on real human subjects are seldom explored 
in previous research, with existing data falling into three 
categories: simulation-based datasets from Eidors or 
COMSOL, laboratory measurements from a limited 
number of individuals. These datasets struggle to meet the 
demands of applying large AI models on actual human 
body data. In this study, targeting lung EIT, we utilize the 
LIDC-IDRI dataset [1] to create the SJTU-Thorax-EIT 
dataset, theoretically enabling the generation of over 
factorial 1000 cases through pre-processing, augmentation, 
and meshing. We detail our methods and results. 

2 Methods 

The LIDC-IDRI dataset is not inherently suitable for 
training EIT-related deep learning models as CT scans 
imaging density distribution while EIT imaging 
conductivity property. The high spatial resolution and 
contrast of CT images also surpass the current capabilities 
of EIT technique. Moreover, CT scans produce static, 
snapshot images, unlike EIT's dynamic and sustained 
monitoring. Therefore, we have devised specialized 
methods to tailor the CT dataset for use with deep 
learning-driven EIT models. 

2.1 Pre-processing 

Raw CT data (Sinogram) is reconstructed into a digital 
model, Fig.1(a). The lung's complex contours are shaped 
by bronchi and fissures, which can complicate EIT image 
reconstruction by increasing computational demand and 
reducing algorithm flexibility. To address this, we 

simplify by extracting smooth external contours of the 
thorax and lungs for FEM models and EIT dataset 
development. This involves segmenting the thorax and 
lung mask (Fig.1(b)) and obtaining the lung contour's 
concave hull, depicted in Fig.1(c). 

2.2 Data augmentation 

The original CT dataset lacks both quantity and 
compatibility with EIT application scenarios. To remedy 
this, we use Data Mashup and Dynamic Image Simulation 
(Fig.1(e) and (f)) to adapt the CT dataset for lung 
ventilation monitoring with EIT. Data Mashup cross-
combines thoracic and pulmonary contours from various 
individuals, while Dynamic Image Simulation scales the 
lung mask to mimic breathing. 

2.3 Forward problem and Inverse problem 

After step 2.2, we utilize Gmsh to generate meshes, then 
we calculate the lung's conductivity at various frequencies 
based on [2]. We obtained measured boundary voltages, 
leading to voltage-conductivity distribution pairs, Fig.1(d). 
We confirmed the discretization's accuracy and the direct 
problem's precision via mesh independence tests, resulting 
in an EIT dataset suitable for real human bodies. 
For inverse problems requiring a different mesh from 
forward problems, and subjects often lack in vivo data, we 
propose the 'EigenChest' model (Fig.1(h)) as a solution. 

3 Conclusions 

We created thorax and lung masks for all over 1000 cases 
in the LIDC-IDRI dataset, and used dynamic generation to 
train large deep learning algorithms. Each case's mask has 
unique identifiers, allowing us to randomly generate 1000 
pairs of voltage-conductivity distribution data for every 
training batch to effectively train the deep learning models.  

4 Acknowledgements 

This study is supported by Shanghai Jiao Tong University 
joint Clinic-Engineering program (YG2021QN37). 

References 

[1] Samuel et al. Medical Physics, Vol. 38, 915-931, 2011 
[2] S. Gabriel et al.  Gabriel, and biology, vol. 41, no. 11, p. 2251, 1996
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Abstract: This study introduces a set of metrics, termed
as matching index, dead space index and shunting index, to
quantitatively assess the ventilation-perfusion (V/Q) match-
ing based on EIT lung images. The proposed metrics take
into account both the intensity and distribution of the as-
sessed images.

1 Introduction
EIT can provide insights into the V/Q matching[1, 2], but
traditional assessments often rely on empirical judgment or
simple calculations of the percentage of regions of inter-
est (ROI) and overlap of binary images, which may fail to
provide detailed information about the spatial and intensity
relationships between ventilation and perfusion.

In this work, we introduce a new evaluative tool within
EIT, named the Match Index (MI), which specifically de-
signed to assess the V/Q matching. Furthermore, two de-
rived indices are proposed to calculate dead space and shunt
rates. We have conducted a series of experiments to validate
the effectiveness of this method.

2 Methods
In this section, we will describe the formulas of the pro-
posed metrics.

2.1 Match Index

The Match Index (MI) is defined as follows:

MI =

∑N
i=1 (P (i)× V (i))

2∑N
i=1 P

2 (i)×
∑N

i=1 V
2 (i)

× 100% (1)

where P (i) and V (i) represent the pixel values of perfusion
and ventilation in the image at the i-th pixel respectively, N
is the total number of pixels in the images.

2.2 Dead Space Index and Shunt Index

The Dead Space Index (DI) and Shunt Index (SI) are further
derived as follows:

DI =

∑N
i=1 V

2 (i)−
∑N

i=1 (P (i)× V (i))×K∑N
i=1 V

2 (i)
× 100%

(2)

SI =

∑N
i=1 P

2 (i)−
∑N

i=1 (P (i)× V (i)) /K∑N
i=1 P

2 (i)
× 100%

(3)
where P (i), V (i) and N are defined as in MI . The K
serves as a normalization factor defined as follows:

K =

√
Vmax

Pmax
× Vavg

Pavg
(4)

where Vmax = max{V (i)} and Pmax = max{P (i)} are
the maximum pixel values of ventilation and perfusion in
the image, respectively, calculated over all N pixels. Vavg

and Pavg represent the average pixel values of ventilation
and perfusion in the lung regions.

The MI, DI and SI satisfy the following relation:
MI = (1−DI)× (1− SI) (5)

3 Experiments
3.1 Sensitivity Study

As shown in Fig. 1, a strong match between perfusion and
ventilation images (Case 1) yields a high MI and low DI and
SI values. However, introducing defects in perfusion (Case
2) or ventilation (Case 3) significantly reduces MI and al-
ters DI and SI, reflecting the metrics’ sensitivity to changes
in lung image distribution. These metrics can be calculated
for individual ROIs to provide more detailed analysis.

Figure 1: The sensitivity evaluation of MI, DI and SI.

3.2 Comparison with Region-Overlapping Method

The comparative analysis in Fig. 2 shows that the region-
overlapping method, based on binary images with a thresh-
old of 20% of the maximum pixel value, does not capture
intensity information, whereas our method successfully in-
corporates the intensity difference between the left lungs of
ventilation and perfusion images.

Figure 2: Comparison of region-overlapping and our method.

4 Conclusion
Our study presents new metrics for EIT that incorporate
both intensity and spatial information, offering enhanced
sensitivity and superior assessment of V/Q matching.
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Abstract: In the analysis of the inverse problem of network
models in Magnetic Induction Tomography only external
edge voltage sources and resulting edge currents are known,
aiming to get all edge resistances. In this work we present
a new calculation method for the edge resistances RRR. We
show that in most typical networks a sequence of only 2 or
3 measurement pairs (uuu1, iii1) , . . . , (uuu3, iii3) are sufficient to
calculate RRR uniquely.

1 Introduction
In Magnetic Induction Tomography, external coils induce
eddy currents within an object, a process replicable through
network modeling. Within this framework, the induction by
external coils can be represented by external voltage sources
uuu acting on individual edges. In the forward problem, edge
resistanceRRR and edge voltage sources uuu are given, allowing
the calculation of edge currents iii through established algo-
rithms. Conversely, the inverse problem entails the deriva-
tion of edge resistancesRRR from known edge voltage sources
uuu and associated edge currents iii inferred from sensor data.
A solution to this inverse problem in Alternating Current
(AC) networks is given in [1]. However, the required num-
ber of measurements is at least equal to the number of nodes
inside the network. An alternative approach for small net-
works utilizing Direct Currents (DC) has also been docu-
mented in [2]. In this work, we show a new method ap-
plicable to arbitrary DC networks. Our findings show that
only 2 or 3 measurements are required to resolve the inverse
problem uniquely.

2 Methods
We use properties of the forward problem and algebraic
methods to find a new solution to the inverse power flow
problem.

2.1 The Forward Problem

In the analysis of the forward problem, the vector uuu ∈ Rm

of edge voltages sources and the diagonal matrix RRR =
diag (Ri)

m
i=1 are given to calculate the resulting edge cur-

rents iii ∈ Rm. This is done using nodal analysis [3]. We
denote byNNN ∈ Rn×m the vertex-edge incidence matrix and
by YYY ∈ Rn×n the corresponding nodal admittance matrix,
defined by

YYY =NNN ·RRR−1 ·NNNT (1)

With uuu ∈ Rm being the voltages-vector of the network, we
first get by nodal analysis the nodal potential ϕϕϕ as a unique
solution of

YYY ·ϕϕϕ = −NNN ·RRR−1 · uuu. (2)

Using ϕϕϕ, we further get the edge currents by evaluating

iii = iii(uuu,RRR) = RRR−1 · (NNNT ·ϕϕϕ+ uuu). (3)

We use properties of the forward problem, especially the
kernel of nodal analysis:

Lemma 1 For any vertex k ∈ {1, . . . , n− 1} let

uuusink(x) :=NNNT · eeek. (4)

Then the set

Usink = span {uuusink(k)|k ∈ {1, . . . , n− 1}} (5)

is the (n− 1)-dimensional kernel of the nodal analysis, in-
dependent of RRR.

2.2 The Inverse Problem

Assuming to have 2 or 3 measurements of edge voltages uuu
and edge currents iii, the inverse problem is to find a unique
diagonal matrix RRR, such that (2) and (3) hold. First, we can
show that for each measurement pair the set of all diagonal
matrices RRR satisfying (2) and (3) is an affine subspace

R(uuu,iii) =
{

diag
(uuu
iii
+

uuusink

iii

)
|uuusink ∈ Usink

}
. (6)

The quotient of two vectors is always to be considered
element-wise.

Second, we can show, that by intersecting these affine
subspace of k = 2, 3 measurement pairs we get a unique
solution

κ⋂
k=1

Rk = {RRRsolution} . (7)

3 Conclusions
In the majority of standard networks, typically 3 measure-
ments are necessary. However, certain network geometries
can suffice with only 2 measurements. An example of such
geometry is found in cuboid networks, the type utilized in
Magnetic Induction Tomography.

References
[1] Y. Yuan, S. H. Low, O. Ardakanian, and C. J. Tomlin, IEEE Transac-

tions on Control of Network Systems, 2022.
[2] C. W. Morgenstern, J. H. Morgenstern, R. Yang, and E. Cook, in

2022 IEEE Power & Energy Society Innovative Smart Grid Tech-
nologies Conference (ISGT), IEEE, 2022, pp. 1–5.

[3] P. Dimo, Abacus Press, Kent, England, 1975.
[4] M. Klein and D. Rueter, Progress In Electromagnetics Research B,

vol. 2017, no. 78, pp. 155–173, 2017.
[5] M. Klein, D. Erni, and D. Rueter, Sensors, vol. 20, no. 5, p. 1306,

2020.
[6] M. Klein, D. Erni, and D. Rueter, Sensors, vol. 21, no. 22, p. 7725,

2021.
[7] Y. Tian, Missouri Journal of Mathematical Sciences, vol. 14, no. 2,

pp. 92–95, 2002.
[8] M. Clemens and T. Weiland, Progress In Electromagnetics Research,

vol. 32, pp. 65–87, 2001.

74



 A 24-Electrode Three-Dimensional Electrical Impedance  

Tomography System 

Zhiwei Li1, Kai Liu2 and Jiafeng Yao3 
123 Nanjing University of Aeronautics and Astronautics, Nanjing, China 

 

Abstract: This paper presents a 3D-EIT system with 24 

electrodes distributed in three equidistant planes and the 

Tikhonov-Noser regularization algorithm is used to 

reconstruct the images of a 3D lung model. Based on the 

simulation and experiment, the performance of the system 

has been tested and the scheme is practicable to apply 

research in the lab from the results. 

1 Introduction 

Electrical impedance tomography (EIT) is a technique 

for reconstructing the conductivity distribution in the field 

by measuring the boundary voltages. However, the 

information in 2D images is finite, which cannot reflect 

impedance changes in the vertical direction of the field. 

Especially in clinical, 2D-EIT cannot monitor lung 

ventilation in the whole region, which makes it hard to 

diagnose certain lung diseases. 

2 Methods 

2.1 Adjacent-drive adjacent-measurement pattern 

The adjacent-drive and adjacent-measurement pattern is 

implemented, and a total of 504 voltage difference data 

are measured for imaging one frame. 

2.2 Multiplex strategy and data acquisition 

The commercial instrument Agilent 34980A was used 

as the data acquisition module, and the liquid conductivity 

ratio (LCR) instrument TH2832 was selected for the 

output voltage excitation signal. The excitation signal is 

1mA, 100kHz AC. Fig. 1 shows the 3D-EIT experimental 

model system. The sensor model is manufactured using 

3D printing and the phantom is a double-lung model.  

 

Figure 1: The diagram of a 3D-EIT system with 24 electrodes. 

2.3 Algorithm 

Combining the advantages of Tikhonov and Noser 

algorithms, a Tikhonov-Noser hybrid regularization 

algorithm was proposed [1][2]. It is expressed as follows:  

 1ˆ ( ( ))T T - Tdiag = + S S I + S S S U  (1) 

where   is 0.01 and  is 100. ̂  is the approximate 

solution of the conductivity distribution. S  is the 

sensitivity matrix. U  is the boundary voltage matrix of 

the measurement domain. I  is an identity matrix. 

3 Results 

The image reconstruction results are shown in Fig. 2, 

and the results of ICC and RMSE are showed in Table I. 

 
Figure 2: The diagram of the image reconstruction results. 

4 Conclusions 

In this paper, a 3D-EIT system with 24 electrodes was 

designed for research in the laboratory, and the feasibility 

of the system was initially demonstrated by the results of 

imaging the 3D lung model. 
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TABLE 1: QUANTITATIVE ANALYSIS OF IMAGE RECONSTRUCTION RESULTS 

Metric ICC RMSE 

True 1.000 0.000 

Simulation 0.933 0.648 

Experiment 0.820±0.019 0.720±0.038 
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Abstract: This study explores the time delay between Elec-
trical Impedance Tomography signals and the air pulse of a
ventilator. Results from in-vivo measurements show that
the signal is delayed by a frame rate-related time, leading
to uncertainty in clinical use. Three components of the time
delay are identified.

1 Introduction
The use of electrical impedance tomography (EIT) in clin-
ical practice, particularly in mechanically ventilated pa-
tients, is increasing [1]. This study examines the time delay
between the air pulse of a ventilator and the measured elec-
trical impedance tomography (EIT) signal in mechanically
ventilated patients. The asynchronism of multiple monitor-
ing signals can result in messy records [2, 3] and confusing
inter-relationships explanation[4]. The causes of the time
delay are investigated to better understand the interplay be-
tween the ventilator and EIT.

2 Methods
The air pulse travels from the ventilator to the patient
through a long tube, and the volume is monitored by a sen-
sor at the end of the machine. Assume that the length and
the diameter of the tube are L and D, and the peak inspira-
tory flow at volume control ventilation (VCV) mode is Q.
Then the cross-sectional area of the tube S = πD2/4, and
the flow rate V = Q/S. Therefore, the time delay caused
by the ventilator Tv = L/V = LS/Q = πLD2/4Q.

The electrode belts are placed around the chest for real-
time data collection at a preset frame rate F . Data will be
loaded by the EIT software development kit with a delay.
Assume the delay is m frames. The corresponding time de-
lay Tt = m/F .

The measured EIT data is filtered with a low-pass But-
terworth filter (cutoff frequency 0.5Hz), causing a phase
delay. The phase delay is estimated using MATLAB fda-
tool, and the time delay caused by the filter is calculated as
Tf = θdelay/2πfr, where fr is the respiratory frequency.

In summary, the estimation of total time delay Te is:

Te = Tv + Tt + Tf =
πLD2

4Q
+

2

F
+

θdelay
2πfr

(1)

3 In-vivo Measurements
The study was done on a 26-year-old healthy male (180cm,
80kg) with the SV600 ventilator (Mindray, Shenzhen,
China) at VCV mode (1m length, 22mm diameter, 60L/min
peak flow, 0.2Hz respiration frequency). EIT data was

recorded by the ET1000 (Huarui Boshi, Beijing, China) at
5 different frame rates (10, 20, 30, 40, 50 Hz).

The time delay T at each framerate is evaluated by se-
lecting the end of the inspiratory as the marker point, shown
in Fig.1(a) (shaded area). The results are listed in Fig.1(b)
showing a time delay of approximately 400 ms at each
framerate, except when F = 10Hz with a delay of 1000
ms. The estimated time delay was calculated using Eq.1
with the given parameters and labeled on the Te column.
The estimated values are in close agreement with the mea-
sured values, with a minimum error of 10%. Further inter-
pretation is required to understand the multiple factors that
contribute to the delay, including sensor performance and
noise.

Figure 1: (a) the time delay(shaded) between EIT voltage signals
and volume pulse of the ventilator (framerate = 50Hz) (b) esti-
mated and measured values of time delay at different framerate

4 Conclusions
The present study is the first, to our knowledge, to exam-
ine the cause of the time delay between the EIT signals and
volume pulse of the ventilator. Understanding the cause of
this delay could reduce uncertainty. Further research in-
volving additional measurements on different subjects and
frame rates is needed to strengthen the findings and to in-
spire future work in multi-signal synchronization.
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Abstract: Pulmonary thromboembolism (PE) is a disease 

with high mortality risk. CT pulmonary angiogram (CTPA) 

is often unsuitable for patients in ICU. Here we presented a 

special case, in which electrical impedance tomography 

(EIT) was used for rapid and early diagnosis of PE. 

Keywords: EIT, pulmonary embolism 

1 Introduction 

PE is a potentially life-threatening condition, may cause ≤

300 000 deaths per year in the US, ranking high among the 

causes of cardiovascular mortality [1]. PE diagnosis is often 

missed because presentations are highly variable and may 

even be asymptomatic. Early and convenient diagnostic 

methods are of significant important [2]. The common 

diagnostic methods of PE have certain limitations in 

clinical practice, especially in ICU. Previous studies 

suggested that EIT can be used to assess regional 

ventilation and perfusion at the bedside [3]. This abstract 

describes a particular case of pulmonary embolism using 

EIT to evaluate lung perfusion. 

2 Case presentation 

An 83-year-old woman with a medical history of 

hypertension and arthritis, regularly taking 

antihypertensive medications and occasionally using 

NSAIDs, presented to our hospital's emergency department. 

She complained of wheezing for three days and sudden 

unconsciousness lasting for three hours. The patient had 

been on bed rest for a week prior due to poor appetite and 

weakness. Upon admission, she exhibited severe 

hypoxemia, metabolic acidosis, significantly elevated 

myocardial markers, and acute kidney injury. 

Laboratory tests revealed a significantly increased D-

dimer level of 4100 ng/L (normal range: 0-300 ng/L). 

Echocardiography indicated a mostly normal right ventricle 

(RV) with no pulmonary artery blockage. However, an 

ultrasound revealed a floating thrombus in the left main 

femoral vein. Additionally, a new complete right bundle 

branch block was observed on the ECG. CT scans primarily 

showed signs of infection (Fig. 1). 

The patient was promptly intubated and placed on 

mechanical ventilation. Despite these interventions, her 

oxygenation continued to deteriorate, necessitating high 

ventilator support. 

Pulmonary Embolism Severity Index (PESI) risk score 

[1] was 141 points, indicating a high mortality risk based 

on age, sex, respiratory rate, mental status, and oxygen 

saturation levels. Unable to perform CTPA due to the 

patient's instability, we employed EIT monitoring with 

saline contrast [4], revealing a significant V/Q mismatch 

leading to poor lung perfusion and oxygenation (Fig. 2; the 

lungs had good ventilation but no perfusion in both left and 

right). This observed phenomenon, exceeding previous 

dead space thresholds [4], represents a novel finding in EIT-

assessed lung perfusion. 

3 Discussion and conclusions 

The patient's history of prolonged bed rest, severe 

oxygenation disorder, elevated D-dimer, and a floating 

thrombus in the main femoral vein strongly suggest PE 

even without CTPA. The presence of persistently 

worsening hypoxemia, high PESI risk score, unstable 

thrombus, and abnormal pulmonary perfusion on EIT 

underscore the PE diagnosis, despite the absence of shock. 

EIT revealed inadequate perfusion in both lungs, indicating 

embolism in the pulmonary arteries. Post-PE, lung 

perfusion decreased significantly, leading to V/Q mismatch 

and hypoxemia. Although our EIT method had limitations, 

focusing on lower lung lobes, future studies will explore 

multiple sites to provide a comprehensive lung perfusion 

assessment. While CTPA remains the gold standard for PE 

diagnosis, EIT emerges as a bedside tool without radiation 

risks. Hypertonic saline injection with EIT offers a safe and 

efficient way to evaluate V/Q matching. 
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Abstract: This study introduces a novel end-to-end gen-
erative adversarial network (GAN) based method for ex-
tracting cardiac-related signals (CRS) from raw electrical
impedance tomography (EIT) data. Experiments on a syn-
thetic dataset demonstrate that our method effectively sepa-
rates CRS from overlapping ventilation components.

1 Introduction
Electrical impedance tomography (EIT) captures dynamic
changes in lung conductivity induced by both respiratory
and cardiac activities, allowing EIT to simultaneously mon-
itor lung ventilation and perfusion. The EIT signal in-
cludes ventilation-related and cardiac-related components.
Although cardiac-related signals (CRS) are significantly
weaker and frequently obscured by noise or modulated by
the more dominant ventilation-related signals (VRS), their
accurate isolation holds substantial clinical value.

Various methodologies such as ECG-gated averaging,
frequency-domain filtering, and principal component anal-
ysis (PCA)[1] have been developed for signal separation
in EIT. However, each method has its challenges, such as
the struggle of frequency-domain filtering with overlapping
spectral or energy distributions of CRS and VRS. Moreover,
these techniques are based on certain assumptions and usu-
ally focus on single aspects of the signals, which may not
fully capture the complex interaction between cardiac and
ventilation influences.

In this work, we propose an end-to-end CRS extraction
method based on the generative adversarial network (GAN)
framework. This method employs adversarial training to
update the generator (G) network, enabling it to automati-
cally model the underlying complex signal distribution of
the raw EIT signal and perform CRS extraction. Mean-
while, the discriminator (D) network serves as an auxiliary
network, helping the G network produce CRS that closely
resemble breath-holding signals (BHS).

2 Methods
The overall architecture of the Generative Adversarial Net-
work (GAN) is illustrated in Fig. 1. The GAN consists of
a generator (G) and a discriminator (D). The G network,
which follows an auto-encoder architecture, takes prepro-
cessed EIT signals as input and outputs the extracted CRS
in an end-to-end manner. The D network acts like a loss
function in some sense, transmitting information to G and
help G’s output to look real. To be specific, it receives
both the BHS and the CRS to update parameters using a
loss function on its output. The BHS is particularly utilized
because it does not have the VRS component, providing a
clean signal that is assumed to share similar features with
the CRS present in the raw EIT signals[2]. Once the model
training is complete, the generator model is saved for real-
time online inference. In this phase, the raw EIT signals are

preprocessed and cut into fixed-length segments, which are
then fed into the trained G network for CRS extraction.

Figure 1: GAN architecture.
3 Experiments
In this section, we evaluated the effectiveness of our pro-
posed GAN-based method on a synthetic dataset crafted
using real data collected from clinical situation. As illus-
trated in Fig. 2, two cases are presented to demonstrate the
performance of our method. The original raw EIT data,
which contains VRS component alongside the CRS com-
ponent of very weak amplitude, was input into the trained
G network to extract the CRS. Analysis of the results in
both the time domain (TD) and frequency domain (FD) re-
veals that the extracted CRS waveforms closely resemble
the ground truth. Notably, these waveforms are free from
the high-order harmonics of the VRS, indicating that our
method can effectively isolate the cardiac signal even in the
presence of frequency overlapping situation.

Figure 2: Extraction results of two cases.

4 Conclusions
In this study, we developed an end-to-end method for ex-
tracting cardiac-related signals using a GAN framework.
The model adopts an encoder-decoder architecture with a
fully convolutional structure, enhancing its speed in pro-
cessing waveform chunks. The findings demonstrate that
this method is not only feasible but also offers an effective
alternative to existing signal extraction techniques.
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Abstract: We propose a feature-based joint inversion
method that simultaneously reconstructs the electrical
impedance, microwave, and ultrasound images of a target.
The structural features of the three modality images are de-
coupled from the value features and interacted during the
inversion process to enforce the structural similarity.

1 Introduction
Electrical impedance tomography (EIT), microwave tomog-
raphy (MT), and ultrasound tomography (UT) are radiation-
free, non-invasive, low-cost medical imaging techniques.
They have been studied for human thorax imaging due to
their unique advantages[1, 2]. EIT reconstructs the con-
ductivity distribution in the domain of investigation (DoI)
and is resistant to measurement noise and variations in the
thorax during respiration. MT determines the permittivity
and conductivity distributions in the DoI and has high con-
trast for abnormal tissues. UT rebuilds the compressibil-
ity and attenuation distributions in the DoI and provides
high-resolution information about organ tissues. Integrat-
ing these three modalities has the potential to provide more
comprehensive insights into physiological changes in the
thorax.

2 Methods
The structural and value features of the three modality im-
ages are decoupled by a disentangled variational autoen-
coder (DVAE). Specifically, the DVAE encoder parameter-
izes an image of any modality into structure code zs and
value code zv . For the same medical target, images of dif-
ferent modalities should have the same structure code but
distinct value codes. This goal is achieved through a group
training strategy. In detail, two images x1 and x2 with dif-
ferent structures and values are input into the DVAE en-
coder to obtain two groups of structure and value codes.
The value codes are exchanged and input to the DVAE de-
coder together with the structure codes to get two recon-
structed images x3 and x4. Each group of training dataset
contains x1, x2, x3, and x4, where x1 has the same struc-
ture as x3 and the same value as x4, and similar for x2.

In separate inversions of the three modalities, we aim to
seek the structure codes zs and value codes zv that mini-
mize the following objective function,

ϕ(zs, zv) =
∥d∗ − G(zs, zv)∥2

2 ∥d∗∥2
+

β

2
(∥zs∥2+ ∥zv∥2) (1)

where d∗ is the measurement data, G(·) is the forward mod-
eling operator, and β is the regularization parameter. The
optimization of (1) is conducted iteratively by the Gauss-
Newton method. The interaction among the three modali-
ties is performed by averaging their structure codes every

K steps,

z̄s,n = (z(EIT)
s,n + z(MT)

s,n + z(UT)
s,n )/3 (2)

where the subscript n denotes the n-th iteration. The final
reconstructed images are obtained by feeding the final zs
and zv to the DVAE decoder.

3 Numerical Examples
We randomly select a thorax model from the test dataset
of DVAE to demonstrate the performance of the proposed
method. The total variation (TV) method is also imple-
mented for comparison. The results are summarized in
Fig. 1. It can be observed that the proposed method signifi-
cantly improves the performance of the three modalities.

Figure 1: Inversion results of TV and the proposed method. GT
denotes the ground truth, MTR and MTI are the real and imagi-
nary parts of the MT model, respectively, and similar for UTR and
UTI. All images are normalized to 0 to 1 and use the same color
bar.

4 Conclusions
This work integrates the EIT, MT, and UT based on the fea-
ture decoupling. The structural and value features of the
three modality images are decoupled by the DVAE. The
consistency of the structural features of the reconstructed
images is enforced in the inversion process. Numerical ex-
amples validate the effectiveness of the proposed method.
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Abstract: This paper presents the Pseudo-Domain 

Adversarial Network (PDAN), a novel transfer learning 

framework designed to address electrode displacement in 

Electrical Impedance Tomography (EIT). Leveraging 

adversarial learning with noisy data simulation, PDAN 

enhances the robustness of EIT systems, improving 

classification accuracy and generalization without requiring 

recalibration, even under conditions of electrode rotation. 

1 Introduction 

Electrical Impedance Tomography (EIT) is increasingly 

applied in diverse fields, from medical imaging to human-

computer interaction, due to its non-invasive nature. 

However, electrode displacement caused by movement or 

improper operation introduces significant data errors, 

impeding the effective use of previously trained models and 

complicating continuous operation without recalibration. 

Traditional methods for addressing electrode displacement 

involve costly hardware modifications or require entirely 

new training of recognition algorithms. These approaches 

either lack scalability due to high costs or lack practicality 

because of the frequent retraining they necessitate. This 

paper introduces a novel transfer learning framework, the 

Pseudo-Domain Adversarial Network (PDAN), which 

leverages adversarial learning enhanced with noisy data 

simulation to tackle the electrode displacement issue in EIT. 

By incorporating images altered to simulate post-electrode 

rotation scenarios, PDAN improves the robustness of the 

system against minor displacements without the need for 

recalibration. 

2 Methods 

The PDAN method utilizes a three-stage approach to 

address challenges in leg movement classification due to 

electrode displacement. The process begins with data 

collection, where impedance data is gathered and a feature 

subset is created by calculating variance and applying 

Pearson Correlation to remove irrelevant features. To 

enhance classification accuracy and expand the training 

dataset, Gaussian noise is introduced to these features, 

preparing the model for real-world conditions including 

electrode rotation. 

The model employs deep adversarial learning to 

improve robustness and generalization across various real-

world datasets. During training, the network adaptively 

selects parameters and generates convolutional features 

automatically during both forward and backward 

propagation. Skip connections and adaptive aggregation 

mechanisms are incorporated to streamline larger network 

regions, and domain loss is utilized to further refine 

parameter selection autonomously. 

This strategic application of advanced technology 

ensures that PDAN can effectively adapt to simulation 

scenarios and excel in real-time verification of performance. 

Our approach is based on transfer learning and is inherently 

robust to different forms of electrode excursions and 

performs well in real-time validation of performance, these 

techniques applied to noise enhancement, adversarial 

learning, and adaptive architecture also enable the model to 

adapt to other types of system electrode excursions, such as 

displacement changes caused by patient motion. Figure 1 

illustrates these modifications, showing how the network 

architecture incorporates impedance images and adapts 

parameters dynamically, which includes gradient reversal, 

cross-layer connections, and neuron modulation. 

 
Figure 1: The PDAN network architecture adopts impedance 

images as inputs. Based on transfer learning methods, the network 

autonomously adjusts parameters, including but not limited to 

gradient reversal, cross-layer connections, and addition or pruning 

of neurons. 

3 Results and Conclusion 

The PDAN was applied to analyse six leg movements: 

sitting, lifting, crossing, standing, walking, and lying, under 

both ideal and displaced electrode conditions. The models 

were evaluated for their classification accuracy and ability 

to generalize in real-world scenarios. The network's initial 

classification accuracy for these movements was nearly 

100%. After rotation, PDAN's classification accuracy 

improved to 99.46%, a significant increase from the 22.60% 

accuracy achieved without adjustments. This demonstrates 

that pseudo domain adversarial techniques effectively 

mitigate electrode displacement effects. 
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Abstract: This paper presents an iterative denoising 

algorithm, a novel approach to addressing the challenges of 

precise regularization term selection and the absence of 

prior knowledge in Electrical Impedance Tomography (EIT) 

image reconstruction. By employing the diffusion model, 

our method can implicitly learn regularization parameters, 

resulting in a significant enhancement in reconstruction 

performance. 

1 Introduction 

The inherent nonlinear and inverse problem nature of image 

reconstruction in EIT presents significant challenges, 

particularly in the presence of noisy measured data. 

Traditional iterative methods like NOSER and IDBP 

algorithms encounter difficulties such as lack of prior 

knowledge and constraints in selecting regularization.  

To address these issues, we propose a novel diffusion 

model-based reconstruction method that amalgamates the 

strengths of probabilistic model and data-driven deep 

learning solutions. Our model offers a flexible framework, 

plug-and-play feature, and easy training for implicit 

learning of regularization parameters. EIT-DPM eliminates 

the need for explicit sampling, thereby sidestepping 

potential sample bias and overfitting problems inherent in 

traditional sampling methods, consequently enhancing the 

quality and diversity of generated samples. 

2 Methods 

Our model comprises two distinct components. The first 

segment employs the L1 regression method to analyse the 

input voltage data, yielding pre-reconstruction outcomes. 

Subsequently, the second part, the diffusion model, acts as 

a post-processing operator, exhibiting exemplary denoising 

capabilities. It enforces constraints during sampling to 

ensure data consistency. By incorporating the initial results 

derived from the L1 regression method, we expedite the 

sampling process, infusing valuable physical properties into 

EIT reconstruction while mitigating the 

 
Figure 1: The architecture of the EIT-DPM network. 

risk of converging towards local optimal solution. The 

detailed sampling process is illustrated in Figure 1. 

3 Results 

 

Figure 2: Comparison of reconstruction effects of several 

methods. 

Figure 2 shows the comparison results of several algorithms. 

Our method significantly reduces artifacts and improves 

image quality compared to traditional algorithms.  
Table 1: Algorithm performance comparison. 

 

We measured indicators in image reconstruction, as shown 

in Table 1. Experiments show that when distortion is 

equivalent, EIT-DPM can achieve more than 60% 

perception improvement compared to traditional electrical 

impedance imaging methods such as NOSER and TV.  

4 Conclusion 

We introduce a novel EIT image reconstruction network 

that outperforms traditional methods in terms of 

performance and robustness. The EIT-DPM proposed in 

this study represents a promising network architecture that 

has demonstrated efficacy across diverse image generation 

tasks. Looking ahead, we aim to tackle more demanding 

challenges, including the reconstruction of medical EIT 

images, leveraging the strengths of our proposed approach.
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Abstract: In the realm of Electrical Impedance 

Tomography (EIT), the application of Physics-Informed 

Neural Networks (PINNs) has predominantly been 

confined to ideal scenarios that presuppose the existence of 

continuous current excitation and Neumann-Dirichlet 

mappings along boundaries. This study extends this 

methodology to address more realistic situations involving 

EIT problems with discrete electrode stimulation. 

1 Introduction 

Physics-Informed Neural Networks (PINNs) represent an 

unsupervised, model-driven approach that is increasingly 

utilized in the study of inverse problems. PINNs are 

distinguished by their mesh-free nature, which eliminates 

the need for extensive finite element mesh partitioning and 

reduces the dependency on large volumes of training data 

when applied to the domain of Electrical Impedance 

Tomography (EIT). Traditional iterative EIT algorithms 

focus on using boundary-measured voltages to deduce the 

internal conductivity distribution. While effective to a 

degree, this approach heavily relies on appropriate 

regularization techniques. PINN methods leverage 

Maxwell’s equations as physical constraints to infer the 

internal electric potential distribution and subsequently 

solve for the conductivity distribution, thereby addressing 

the inverse problems of EIT. However, current PINN 

applications are largely restricted to ideal scenarios that 

assume continuous current excitation at the boundaries, 

leading to Neumann-Dirichlet mappings [1, 2]. While 

effective for training, this does not align with real-world 

EIT problem-solving, where the boundary is limited to a 

finite number of electrodes providing stimulation. Thus, we 

propose a novel PINN approach tailored for practical EIT 

challenges, accommodating the discrete electrode 

configurations encountered in real settings. 

2 Methods 

As depicted in Figure 1, our experimental setup consists of 

a domain with a background conductivity of 1, into which 

three circular regions are introduced. We utilize 16 

electrodes for current stimulation, evenly split between 8 

anodes and 8 cathodes. This configuration allows the 

circular sensors to generate an electric potential field. By 

computing the partial derivatives in the x and y directions, 

we can observe internal variations, indicative of the abrupt 

changes in the field as the current passes through the objects. 

A multilayer perceptron (MLP) model is constructed to 

harness this setup. Maxwell's equations are employed as 

physical constraints within our training process, guiding the 

neural network to effectively solve for the conductivity 

distribution across the domain. This approach not only 

adheres to the physics involved but also leverages the 

computational power of neural networks to tackle the 

inverse problem of EIT under realistic conditions. 

 
Figure 1: Real conductivity, internal electric potential distribution 

under discrete electrode stimulation, partial derivatives of the 

internal electric potential distribution with respect to x and y, and 

predicted conductivity. 

PINNs are categorized under unsupervised learning models, 

necessitating retraining for each distinct Electrical Impedance 

Tomography (EIT) issue. Each training session currently takes 

more than 15 minutes, highlighting the need for further 

exploration in real-time imaging applications. Additionally, the 

accuracy of electrode placement is crucial as it directly impacts 

our ability to precisely calculate the internal electric potential field 

within the human body. These challenges underscore the ongoing 

efforts required to refine and enhance the applicability of PINNs 

in practical scenarios. 

3  Conclusion 

The predictive results demonstrate that our PINN method 

effectively resolves the complete inverse problem in 

practical EIT scenarios, offering a robust tool for accurate 

conductivity mapping in diverse applications. 
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Abstract: This study investigates ventilation variations 
during controlled mechanical ventilation (MV), 
spontaneous breathing trial (SBT), and the weaning process 
in infants following liver transplantation. 

1 Introduction 

Pediatric liver transplantation (PLT) is critical for 
managing end-stage liver disease in children [1]. Due to the 
liver-lung proximity, postoperative respiratory recovery is 
influenced by surgery, directly affecting prognosis[2]. 
Utilizing electrical impedance tomography (EIT), our pilot 
study observed mainly right-sided gas distribution 
postoperatively, with varying recovery [3]. The present 
study further investigated typical postoperative ventilatory 
patterns in PLT recipients who were successfully extubated. 

2 Methods 

The prospective study, approved by the Local Ethics 
Committee, included PLT patients admitted to the ICU 
postoperatively under anesthesia. All patients underwent 
four phases of respiratory recovery monitored by EIT 
(VenTom-100, MidasMED, Suzhou, China): 1) mechanical 
ventilation (PCV); 2) pressure support (PSV at 15/5 
cmH2O); 3) spontaneous breathing trial (PSV at 12/3 
cmH2O for 2 hours 4) spontaneous breath after weaning. 
Analysis was conducted on 30 subjects who successfully 
met the SBT criteria (SPO2≧95%; Exhaled tidal volume≧
5ml/kg ideal weight; Respiratory rate: 20-60bpm for <6 
months or 15-45bpm for 6 to 24 months) and were 
extubated. Demographic data and EIT records were 
collected. Tidal impedance variation (TIV) distribution in  
the left/right regions and the ventral/dorsal regions, along 
with the Global Inhomogeneity (GI) index and center of 
ventilation (CoV), were evaluated. 

3 Results 

Thirty patients (median age: 8 months, median weight: 7.5 
kg, median height: 66 cm; 53.3% male) were included in 
the study. Ventilation distribution predominantly favored  
the right and ventral sides during the 4 phases (Fig. 1). As 
the transition from PCV to spontaneous breathing occurred, 
the CoV gradually shifted ventrally. The increase in the GI 
index from PCV to spontaneous breathing reflects an 
increase in inhomogeneity (Fig. 2), for detailed results, 
please refer to Table 1. 

4 Discussion and Conclusions 

We investigated the ventilation distribution patterns during 
lung recovery after PLT. Our findings revealed that gas 

distribution was predominantly on the right and ventral side 
in all patients. We hypothesize that due to the placement of 
the transplanted organ on the left side, it restricts 
diaphragmatic movement, thereby reducing left chest wall 
compliance and resulting in physiological compensation on 
the right side. Another interesting observation was the shift 
in the center of ventilation towards the ventral side during 
the recovery of spontaneous breathing, contrary to the 
dorsal ventilation increase observed in previous studies 
[4,5]. While we acknowledge the potential specificity of 
our study population, these findings underscore the 
importance of bedside monitoring for post operative 
respiratory recovery in pediatric patients. 
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Abstract: We describe an anatomically accurate torso mesh

and set of tools to allow arbitrary electrode placement. The

work is made available through EIDORS and on Zenodo.

1 Introduction

Anatomically-accurate finite element meshes (FEM) are

needed for EIT forward and inverse simulations. While

many such meshes are publicly available, EIT also requires

the ability to specify and refine body surface electrodes. To

investigate novel EIT configurations (e.g. for 3D EIT) tools

are needed to support arbitrarily electrode positions.

2 Methods and Results

The base geometry was taken from BodyParts3D[6]. Sep-

arate surface triangulations were merged and modified to

avoid overlaps and increase quality. Closed organ sur-

faces were created, meshed with Gmsh [3] and merged in

EIDORS [1]. A torso shape without arms was derived from

the whole-body skin surface in BodyParts3D, on which

electrodes can be placed in EIDORS [4]

The mesh contains the heart, lungs, and major vessels.

The heart is segmented into the heart wall and left and right

blood pools, without valves. Simplified vessels (aorta, left

and right pulmonary artery, inferior/superior vena cava, pul-

monary veins) are modelled with ∼ 2 mm thick walls, trun-

cated, and capped, enclosing the blood pool in their lumen.

The lumen of the trachea and major bronchi is modelled as

void space. Equipped with electrodes, the model torso con-

sist of ∼ 7 million elements.

Example image of the FEM mesh are shown in

Fig.1. All software to generate the component sub-

images is part of the latest EIDORS release [2] (function

mk_thorax_model_bp3d).

3 Discussion

We hope this contribution helps the EIT and bioimpedance

community to more easily model detailed anatomical fea-

tures of the thoracic anatomy. To facilitate access to this

model, it has been made available as part of EIDORS[2],

and also uploaded to Zenodo[5].
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Figure 1: Illustrations of the generated FEM with multiple electrode planes. A) Full model with coloured organ regions, B) zoomed

image into the full model in the heard region, C) FEM mesh in a slice through the ventricles.
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Abstract: Hemorrhagic transformation is a common and 

serious complication that often occurs after thrombectomy 

in cases of acute ischemic stroke (AIS), potentially 

worsening the patient's clinical condition. This study 

introduces a pilot clinical trial utilizing brain EIT to 

monitor hemorrhagic transformation following 

thrombectomy in AIS. Initial findings suggest that EIT is 

capable of identifying alterations in intracranial 

impedance resulting from reperfusion injury, indicating 

the potential for real-time detection and estimation of 

hemorrhagic transformation risk post-thrombectomy. 

1 Introduction 

Acute ischemic stroke (AIS) has become a prominent 

global health concern, contributing significantly to 

mortality rates and serving as a primary contributor to 

long-term disabilities. The abrupt and unpredictable nature 

of this condition presents significant challenges to 

healthcare systems and imposes a substantial burden on 

patients and their families. Thrombectomy is frequently 

utilized in the management of AIS to promptly reestablish 

normal cerebral blood flow, thereby reducing the extent of 

brain tissue damage. 

Mechanical thrombectomy is utilized with the goal of 

expeditiously reestablishing blood flow to cerebral tissue, 

thereby preserving the ischemic penumbra and mitigating 

damage to brain tissue. This procedure has garnered 

widespread adoption on a global scale, with a notable 

surge in its utilization in China, where the volume of 

procedures has increased by over tenfold in recent years. 

Nonetheless, as the procedure becomes more prevalent, 

the potential complications associated with it, particularly 

hemorrhagic transformation (HT), are gaining heightened 

scrutiny. 

HT is characterized by the sudden onset of bleeding in 

ischemic brain tissue following the restoration of blood 

flow, which can lead to significant adverse outcomes that 

may negate the benefits of surgery and worsen the 

patient's condition, potentially endangering their life. 

Timely detection of HT is essential for prompt medical 

intervention. Emerging Imaging Technology (EIT) serves 

as a novel monitoring approach that offers continuous, 

convenient, and noninvasive support to conventional 

imaging modalities [1, 2]. 

2 Methods 

This trial study was performed in the intensive care of 

Neurosurgery of Northern Jiangsu People’s Hospital. The 

inclusion criteria for this study encompass patients 

diagnosed with acute ischemic stroke who are deemed 

suitable candidates for thrombectomy surgery, are aged 18 

years or older, have no comorbid serious illnesses, provide 

informed consent, and consent to postoperative EIT 

monitoring. Patients who exhibit signs of postoperative 

bleeding, have allergies to electrode materials, or have 

recently participated in other studies should be excluded 

from the study. EIT using EIT-B300 device (EI Medical, 

Nanjing, China) was recorded to monitor and assess the 

likelihood of intracranial hemorrhage. 

3 Results 

In the present study, a cohort of 30 patients was examined, 

revealing that 4 patients exhibited HT following 

thrombectomy surgery as detected by EIT, with 

subsequent confirmation of this finding through CT scans. 

As depicted in Figure 1, a 51-year-old male patient with 

AIS exhibited a reduction in impedance in the left basal 

ganglia region as detected by EIT within 12 hours 

following thrombectomy. Subsequent CT scans further 

confirmed the occurrence of HT in this particular 

anatomical area. 

 

 
Figure 1: EIT and CT of postoperative HT in AIS. 

4 Conclusions 

Clinical research on these cases has shown that EIT has 

potential for monitoring HT after AIS surgery. While still 

in early clinical research, the use of EIT in monitoring 

neurological diseases shows great potential. In the future, 

this technology can create an early warning system for HT 

after AIS thrombectomy and monitor brain conditions in 

real-time to evaluate treatment effectiveness and 

personalize treatment plans. The integration of organic 

imaging with other medical technologies will enhance 

diagnostic accuracy and support treatment decisions. 
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Abstract: This work proposes a data compensation 
method based on a priori information which aims to 
reduce the influence of cerebrospinal fluid (CSF) change 
on electrical impedance tomography (EIT) of hemorrhage. 
The difference between boundary voltages under 
hemorrhage and CSF change was quantitatively analyzed 
based on a three-dimensational cranial model, which is the 
basic of the prior matrix. Based on this, we conducted data 
compensation, and reconstruction of a hemorrhagic target 
with the new method and traditional damped  least-squares 
(DLS) algorithm. Results show that the DLS algorithm 
cannot reconstruct the impedance change accurately in the 
case of CSF change, while the compensation method is 
able to achieve an effective characterization of 
hemorrhagic target. 

1 Introduction 

Electrical impedance tomography has significant 
advantages in hemorrhage monitoring. Theoretically, 
intracranial impedance decreases after hemorrhage, but it 
has been found that impedance changes in EIT show a 
trend toward higher or lower impedance[1,2], which may be 
due to CSF change under closed-cranial conditions that 
have an effect on hemorrhagic targets’ imaging[3]. The 
Impedance of CSF is lower than that of blood. When the 
occupancy effect of hematoma foci creates a compression 
of the surrounding brain regions, it leads to the drainage of 
CSF with better electrical conductivity, which increases 
intracranial impedance and affects the hemorrhage 
characterization. To address this problem, this study 
proposed an EIT reconstruction method based a prior 
information data compensation, carries out simulation 
experiments, and compares the imaging results of this 
method with those of the DLS algorithm. 

2 Methods 

A 3D cranial simulation model with the CSF layer was 
built and was divided into four brain regions. The CSF 
change was abstracted as an EIT imaging problem for its 
volume changes in different brain regions in the physical 
field for simulation experiments. First, the effect of 
different volumes of CSF change on EIT measurement 
data was quantitatively analyzed. Next, the measured 
voltage changes in the case of bleeding 5 ml and CSF 
reduction 5 mL were comparatively analyzed. 
Furthermore, a priority matrix was built based on the 
above data and data-compensated imaging was performed. 

2.1 Figures and tables 

The 3D brain model with CSF layer divided into four 
regions was showed in Figure 1.   

 
Figure 1: Cerebrospinal fluid (CSF) layer in brain model.   
The reconstruction images were shown in Figure 2.  

 
Figure 2:  The reconstruction images based on traditional DLS 
algorithm and the data compensation method. 

2.2 Equations 

The compensation voltage change which was used to 
reconstruction could be expressed as equation 1.  
 ∆𝑉𝑉𝑎𝑎𝑓𝑓 = ∆𝑉𝑉𝑏𝑏𝑓𝑓 − ∆𝑉𝑉𝑐𝑐𝑠𝑠𝑓𝑓 (1) 

where ∆𝑉𝑉𝑎𝑎𝑓𝑓 was the compensation voltage change,  ∆𝑉𝑉𝑏𝑏𝑓𝑓  
was the measured voltage change, and ∆𝑉𝑉𝑐𝑐𝑠𝑠𝑓𝑓  was the 
calculated voltage change by a direct linear relationship 
matrix between the voltage and the volume change of CSF.  

3 Conclusions 

In this paper, a data compensation method for reducing the 
impact of cerebrospinal fluid change on hemorrhage 
reconstruction of EIT is proposed. Simulated Experiments 
have been conducted, which shows this method can 
accurately reconstruct hemorrhagic target in the 
development of brain injuries with CSF change.  
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Abstract: The 6-minute walk test (6MWT) is a valuable 

tool for assessing obstructive lung diseases. Regional 

ventilation patterns have not been evaluated during 6MWT. 

The present study showed some preliminary results.  

1 Introduction 

When assessing lung functions for patients with obstructive 

lung diseases, we face several challenges, e.g. in 

completing forced vital capacity (FVC) maneuvers, high 

level patient cooperation is required. Since obstructive lung 

diseases like chronic obstructive pulmonary disease (COPD) 

and asthma can cause airflow limitation and breathing 

difficulties, some patients may struggle to perform FVC 

maneuvers effectively, impacting the accuracy of the 

results obtained through spirometry. 

The 6-minute walk test (6MWT) [1] serves as a valuable 

alternative or complementary tool for assessing these 

patients. It offers a more comprehensive evaluation of 

functional capacity and endurance in real-world situations. 

The present study showed some preliminary results 

evaluating subjects’ regional ventilation changes before 

and after 6-min walk.  

2 Methods and results 

Six subjects were scheduled for 6MWT. Their regional lung 

function was examined with EIT (VenTOM-100, 

MidasMED, Suzhou, China) before (T1) and at the end of 

6MWT (T2) for 1 minute during relax tidal breathing period. 

To be exact, T2 is the last minute during the 6MWT (it was 

feasible with the wireless data collection module). The 

electrode belt was positioned at the 4-5 intercostal spaces to 

prevent any interference from abdominal volume changes 

in the EIT data. Pendelluft amplitude measured with EIT 

was calculated according to a previous study [2]. 

The indications of these subjects for 6MWT were: 2 were 

patients with COPD, 1 with asthma, 1 with hypertension, 1 

reported chest tightness and abdominal distension, 1 had 

colon cancer. The asthma patient had bronchodilator before 

the 6MWT. The results were presented in Table 1. 

 

Table 1. EIT-based pendelluft results (amplitude over tidal 

variation). 
 T1 T2 

1 (COPD) 7.0% 47.8% 

2 (COPD) 0.5% 14.3% 

3 (asthma post BD) 3.3% 2.9% 

4 1.5% 2.3% 

5 0.4% 2.1% 

6 2.6% 3.5% 

 

 
Figure1. The tidal variation (TV) and pendelluft amplitude 

(Amp) at T1 (1st row) and T2 (2nd row). 

 

3 Discussion and conclusions 

Attempts were made to assess lung functions during tidal 

breathing in patients with obstructive diseases without 

performing FVC [3]. Unfortunately, without the workload, 

patients with COPD might not exist any flow limitation. 

Therefore, we designed this study to add workload to the 

subjects’ respiratory system to provoke their potential flow 

limitation. The preliminary results from 6 patients with and 

without obstructive lung disease indicated that our study 

design has the potential to identify the obstruction without 

performing FVC maneuver. Patients with COPD had a 

much higher increase in pendelluft after 5 minutes walking, 

which did not occur in other subjects, not even for the one 

with asthma, after he had the bronchodilator. Perhaps due 

to increased physical activity, the uneven distribution of 

alveolar air in COPD patients is exacerbated, cause an 

increase in pendelluft. 

Unlike spirometry, which may be challenging for patients 

with obstructive lung diseases due to the forced breathing 

maneuvers involved, the 6MWT is generally well-tolerated 

as it involves walking on a flat surface at a self-selected 

pace for six minutes. This can be more feasible for patients 

who struggle with performing complex breathing tests. 

Unlike the controlled environment of spirometry, the 

6MWT mimics daily activities by measuring the distance a 

person can walk in six minutes. This test reflects the 

individual's exercise tolerance and response to physical 

exertion in a practical setting. 

Future study may include more subjects and evaluate the 

changes during 6MWT, instead of assessing only the 

changes before and at the end period. 
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Abstract: This study compares two electrical impedance 

tomography (EIT) ventilation/perfusion (V/Q) assessment 

approaches in experimental hypoxemic Acute Lung Injury 

(ALI) pigs under extracorporeal membrane oxygenation 

(ECMO) support. 

1 Introduction 

EIT facilities bedside V/Q assessment and is increasingly 

used in supporting clinical management of hypoxia, 

especially during ALI. Various methods for calculating 

lung V/Q match have been reported to investigate the 

impact of clinical treatments on V/Q (prone positioning, 

positive end-expiratory pressure, etc) [1]. However, the 

consistency of different methods is uncertain. We 

compared two commonly used EIT V/Q assessment 

approaches in empirical ALI animal model to identify 

potential pitfalls when adapting current EIT V/Q analysis 

approaches to clinical scenarios. 

2 Methods 

Four ALI pigs inducted by Oleic acid in a previous study 

were studied [2]. For regional lung perfusion monitoring, 

a 20 ml bolus of 10% NaCl was injected through the 

central venous catheter during an end-expiratory 

respiratory pause (>20s). EIT (Pulmovista 500®, Dräger 

Medical, Lübeck, Germany) continuously recorded 

ventilation and perfusion impedance values at 50Hz. 

Cardiac output (CO) was recorded through a pulmonary 

artery catheter (Arrow, International, USA). EIT 

ventilation and perfusion data at baseline and 8 hours after 

ALI were calculated using customed software (The 

MathWorks Inc., Natick, MA). Functional perfusion maps 

were derived from the slope of regional impedance-time 

curves post saline bolus injection [3]. For V/Q match 

assessment, the Area-limit-Approach (ALA) and 

Absolute-value-Approach (AVA) were employed, detailed 

approach describe refer to legend of Figure 1. 

3 Results 

The two V/Q approaches showed decreasing trends in V/Q 

match following ALI induction. At both baseline and 8 

hours post-injury, the ALA exhibited a 3-18 times higher 

percentage of match compared to the AVA (Table 1). 

Additionally, the match region in the ALA corresponded 

to low V/Q regions in the AVA (Figure 1). 

4 Conclusions 

EIT V/Q assessment indicates a decline in match trends 

post-injury, aligning with disease physiology. However, 

V/Q match solely relying on the overlap of separately 

calculated ventilation and perfusion areas (ALA), may 

overestimate match areas by neglecting quantitative 

mismatches. Conversely, incorporating absolute resistance 

values (AVA) shows potential in quantifying V/Q value 

mismatches, albeit requiring further validation against 

gold standards. It's worth noting that this approach has 

been adapted to account for systemic abnormalities in the 

MV/CO ratio, potentially stemming from pathological and 

clinical conditions affecting CO and MV. In conclusion, a 

thorough evaluation of methods and application scenarios 

is essential before interpreting EIT V/Q match results. 

 
Figure 1: Representative lung V/Q match images from two EIT 

approaches in ALI pig model. In the Area-limit-Approach, areas were 
defined as ventilated by an impedance change exceeding 15% of the 

maximum global ventilation impedance change and perfused by 20% for 

perfusion, respectively. Ventilated areas with no perfusion are shown in 
blue, perfused regions with no ventilation in red, and Match areas with 

both ventilation and perfusion in white. In the Absolute-value-Approach, 

the absolute V/Q value was calculated by dividing pixel impedance 
values in ventilation normalized to alveolar minute ventilation (MV) by 

pixel values in perfusion normalized to cardiac output (CO). The color 

bar indicates V/Q values, with values between 0.8 and 1.25 considered 

normal (Match) [4].  
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Smart Adhesive Bandage System for Detection of Intravenous 

Infusion Leakage Using Bioelectrical Impedance Measurement 
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Abstract: This article introduces a smart adhesive 

bandage system designed for detecting intravenous 

infusion leakage using bioelectrical impedance 

measurement technologies. The system incorporates 

flexible electrode patches to enhance comfort and skin 

compatibility, identifying leakage events based on changes 

in electrical impedance measurements. Our experiments, 

simulating leakage on biological tissues, demonstrate that 

the system can detect extremely small leaks (~0.1 mL) 

with a high sensitivity of 90%.   

1 Introduction 

In intravenous infusion scenarios, leakage problems are 

common and may lead to serious complications, such as 

tissue necrosis. Traditional leakage detection mainly relies 

on naked eye observation by doctors. This method has 

obvious limitations in detecting small leakage, resulting in 

a low early detection rate. The development of leakage 

detection devices is of great clinical significance. 

However, existing detection methods like Impedance 

threshold judgment [1], RF measurements [2] and Infrared 

light reflection measurement [3], are facing problems such 

as low detection accuracy, limited measurement depth, 

and low sensitivity to trace leakage. Therefore, this article 

is devoted to the development of an effective and low-cost 

device for detecting trace liquid leakage.  

2 Methods 

2.1 System design 

The system consists of two main components: the 

impedance measurement module, responsible for 

measuring and transmitting bioelectrical impedance values 

of biological tissues, and the host computer calculation 

module, which utilizes various machine learning 

algorithms including Support Vector Machine (SVM), K-

Nearest Neighbor (K-NN), decision trees, neural networks, 

etc., to analyse impedance data and produce leakage 

detection outcomes. Through experimentation, the most 

effective machine learning method is selected based on 

performance metrics. The cost of building the system is 

lower than $15, while the patch is as low as $1. 

 
Figure 1: Impedance measurement process.   

2.2 Experiment 

Data collection was performed on a piece of pig leg to 

evaluate the accuracy, sensitivity, and minimum 

measurement volume of the system. In details, we injected 

a certain amount of saline into a piece of pig leg tissue 

multiple times to simulate constant leakage. Additionally, 

we introduced motion artifact data in some experiments to 

simulate four types of motion interferences: bending, 

stretching, torsion, and translation. Such introduction was 

aimed at evaluating the real performance of the system for 

coping with the motion interferences.  

 
Figure 2: Pictures of experiment. (a) Soft electrode patch. (b)  

Measure the impedance value on pig leg. (c) Injecting liquid to 

simulate leakage. 

3 Result 

Among various machine learning methods, SVM 

demonstrates the highest performance. The system 

achieves an accuracy of 85%, sensitivity of 90%, and 

specificity of 80%.  

Table 1: System performance comparison.  

 Sensitivity 

(%) 

Minimum 

detectable 

volume(mL) 

Detection 

depth 

Nelson R C [1] 90 2.8 Deep 

Carr K L [2] 99.8 20 Shallow 

Winchester L W 

[3] 
93 0.1  Shallow 

Ours 90 0.1 Deep 

4 Conclusions 

In this study, we introduce a smart adhesive bandage 

system designed to detect intravenous infusion leakage. 

This system accurately identifies extremely small leaks, 

even amidst motion artifact events, by measuring changes 

in bioelectrical impedance. Our findings suggest that this 

technology could be a promising tool for enhancing the 

safety of intravenous infusion procedures. 
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Abstract: This paper presents the evaluation of the clinical 

trial for seventy volunteers that carried out between August 

2021 to January 2022 using an Electrical Impedance 

Mammography (EIM) system that was designed to detect 

human breast cancer.   

1 Introduction 

An electrical impedance mammography (EIM) system [1] 

has been developed and went through a series of clinical 

trials in the China Welfare Institute International Peace 

Maternal and Child Health Hospital. Results were 

evaluated with postoperative EIS experiment for the 

identification of cancer objects in EIM images 

reconstructed by a customized 3D image reconstruction 

algorithm [2]. There was a total of 100 cases in the first 

phase of clinical trial, 30 cases were eliminated in the early 

"system calibration/researcher training. Within the 70 

cases, there were 75 sides of data (left or right side of 

breast) have been enrolled into the statistical analysis: 34 

sides are benign (among 29 cases), 41 malignant sides 

(among 41 cases), plus 49 tumour-free sides, total 124 

sides. 

2 Methods 

The preliminary results of these 70 cases in the first phase 

are mainly divided into two parts: A. Preliminary summary 

of "4+2 main evaluation indicators" using bioimpedance 

breast detector (EIM); B. Control group mammography, 

Preliminary summary of "4+2 main evaluation indicators" 

for combined breast ultrasound and mammography-

ultrasound. 

2.1 4+2 main evaluation indicators of EIM 

Preliminary results of the “4+2 main evaluation indicators” 

conducted by EIM are listed in Tab. 1. 

2.2 4+2 main evaluation indicators of EIM, US and 

combined EIM-US 

Preliminary results of the "4+2 main evaluation indicators" 

of EIM, breast ultrasound and combined EIM-ultrasound 

are listed in Tab. 2. 

3 Conclusions 

Clinical studies have found that the missed detection rates 

of mammography and ultrasound equipment are still high, 

30.77% and 14.63% respectively. If the "double gold 

standard" of "mammography-ultrasound combined 

examination", which is recognized as the best test for breast 

disease screening at home and abroad, is used, the missed 

detection rate can be significantly reduced to 7.69%; at the 

same time, the detected EIM "missed detection" rate” is 

currently controlled at around 12.2%. 

This proves that with the full support of the international 

clinical trial team and the two teams (breast department and 

pathology department) of Shanghai International Maternity 

and Children's Hospital, a higher level of diagnosis of 

malignant tumours has been achieved. "Mammography + 

Breast Ultrasound" The "accuracy" and "specificity" of the 

joint test have reached a high level of between 92-93%. 

The preliminary trial also showed that although there 

are still many aspects of EIM technology that need to be 

improved and updated, in terms of hard-core technology, it 

has initially surpassed the internationally accepted gold 

standard for breast screening "molybdenum and palladium" 

and the EIM technology that is being tested in China. The 

gold standard "breast ultrasound" is close to the effect of 

the combined test of "mammography + ultrasound". The 

"accuracy rate" and "specificity" of EIM have initially 

approached 88% and 94% respectively. 

The current preliminary results show that EIM can 

detect most of the benign/malignant breast lesions that can 

be detected by mammography/breast ultrasound/breast 

magnetic resonance. 
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Table 1: Preliminary results of the “4+2 main evaluation indicators” conducted by EIM 

 Sensitivity 

=a/(a+c) 

Specificity 

=d/(b+d) 

positive 

predictive value 

negative 

predictive value 

Missed detection 

rate 

false positive rate 

=a/(a+b) =d/(c+d) =1- Sensitivity =1- Specificity 

Malignant (ma)  90.24% 95.18% 90.24% 95.18% 9.76% 4.82% 

Benign (be) 85.29% 93.88% 90.63% 90.20% 14.71% 6.12% 

ma+be average 87.77% 94.53% 90.43% 92.69% 12.23% 5.47% 
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Abstract: Electrical impedance tomography (EIT) shows 

promising application value in thorax imaging, where a 

single layer of electrodes has typically been used to 

construct a transverse slice of the body. However, such 2D 

images omitted the inhomogeneities in vertical direction 

of physiological process above and below the electrode 

plane. Using two (or more) layers of parallelly arranged 

electrodes could provide more information on the vertical 

process in the thorax and be used to reconstruct 3D images. 

The electrical signals are closely related to the 

configurations of electrodes. In view of this, the impact of 

electrode configurations including size, spatial 

arrangement, and excitation/measurement patterns on the 

EIT reconstruction are numerically studied. By 

reconstruction of a series of targets, several FoM are 

evaluated and the relation between them and electrode 

configurations are analysed.  

1 Introduction 

By injecting a safe current into human body and 

measuring electric potential from the surface, EIT 

reconstruct the change of conductivity distribution that 

induced by physiological process in the body, showing 

promise for monitoring ventilation and blood perfusion in 

the thorax. In most common applications of EIT, a single 

transverse plane of electrodes has been used to reconstruct 

2D images within the layer. However, the current flow in 

the body diffuses in 3D [1] and the physiological process 

is also inhomogeneous in vertical direction, which would 

be omitted in EIT with single layer of electrodes. With 

two (or more) layers of electrodes, more information in 

the vertical direction can be captured and 3D images are 

more readily to reconstruct. During this procedure, the 

distributions of current flow and measurement voltage are 

closely related to the configurations of electrodes, such as 

the position, size and the excitation/measurement patterns. 

Therefore, the impact of above electrode configurations on 

the reconstruction of 3D EIT images are numerically 

studied in this paper, providing insight into the robustness 

of 3D EIT and the improving single-slice EIT images from 

multiple electrode planes. 

2 Methods 

In this simulation study, two layers of electrodes are 

arranged in a 3D chest finite element model based on 

human body geometry. And a serious of small contrast at 

various positions in the model are simulated, as shown in 

Fig.1. Firstly, the voltage measurements are calculated 

with varied sizes of electrode, heights of lower electrode 

layers, and the different excitation/measurement patterns 

respectively. Then, 3D EIT images are reconstructed, in 

addition with 30 dB Gaussian white noise, through the 

Graz consensus reconstruction algorithm for EIT (GREIT) 

algorithm [2]. GREIT is a linear reconstruction for 

difference EIT. The images are obtained by multiplying 

difference voltage data by a reconstruction matrix R as 

given by 

( ) ( )

( )

2

arg min
k

k k

k

= −
R W

R x Ry  (1) 

where 
( )k

x%  is the individual desired image, y(k) is the 

corresponding measurement voltage, and w(k) is a vector 

weighting individual desired image elements. 

 
Figure 1: Simulation model with two electrode planes and the 

reconstructed small contrasts.   

To evaluate the impact of different electrode 

configurations, GREIT FoM and the Z-resolution measure, 

i.e., amplitude response, position error, resolution, shape 

deformation, ringing and Z-resolution, are used [3] and the 

reconstruction images are compared. 

3 Conclusions 

Different electrode configurations have selective impact 

on the quality of 3D reconstruction. In general, the square 

pattern with alternate horizontal and vertical excitation 

and measurements shows better spatial resolution 

capability, while adjacent pattern shows more stable 

amplitude response for different small contrasts. 

Increasing the distance between the two electrode planes 

can suppress the ringing effect, but the spatial resolution 

capability is reduced as well. Smaller electrode improves 

the spatial resolution and amplitude response stability, but 

the influence of contact impedance needs to be considered 

comprehensively.  
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Abstract: The study aimed to assess if EIT could detect  

spatial and temporal heterogeneity during pulmonary 

function testing in patients with normal one-second rates. 

Based on pulmonary function testing and EIT, the PRISm 

(preserved ratio impaired spirometry)  group exhibited a 

higher prevalence of hypertension, CAT score, SGRQ 

score and greater temporal and spatial heterogeneity. 

Receiver-operating characteristic curves indicated that the 

GI discriminated between PRISm and Normal groups. In 

the Normal group, subgroup analysis revealed differences 

in regional lung function. We can sensitively identify 

spatial and temporal heterogeneity in regional lung 

function among patients with normal one-second rates by 

EIT. 

1 Introduction 

Several large cross-sectional and longitudinal studies on 

PRISm have revealed its high prevalence. Notably, 

approximately 10% to 40% of patients with PRISm tend to 

develop COPD [1-2]. Moreover, patients with normal lung 

function are also at risk of converting to PRISm. In COPD 

patients, EIT combined with pulmonary function testing 

can evaluate the spatial and temporal distribution of lung 

capacity in different regions and identify pathologically 

induced ventilation heterogeneity [3]. 

2 Methods 

The study is a prospective observational trial that enrolled 

131 patients at the Sir Run Run Shaw Hospital. Based on 

pulmonary function testing and EIT examinations, we 

categorized 88 individuals into the Normal group and 26 

into the PRISm group. The study compared differences in 

baseline characteristics, comorbidities, questionnaire 

scores, and EIT-related parameters. Quantitative indicators 

are compared by t-test or Mann-Whitney U test according 

to the data distribution. Categorical indicators are by chi-

square test or exact probability method. ROC curves were 

generated to compare the predictive power of EIT 

parameters in distinguishing the PRISm patients and the 

Normal patients. P values < 0.05 were considered 

significant.Subgroup analysis was conducted based on 

symptom scores. Statistical analysis was performed with 

GraphPad Prism version 10. 

2.1 Figures and tables 

A  B  

Figure 1: EIT analysis images during lung function testing. A: 

PRISm group; B: Normal group. 

 

Figure 2: Receiver-operating characteristics (ROC) curves. 

3 Results 

In comparison to the Normal group, the PRISm group 

exhibited a higher prevalence of hypertension (P<0.001), 

CAT score (P=0.006), and SGRQ score (P=0.012). The 

PRISm group exhibited greater temporal and spatial 

heterogeneity in lung ventilation. ROC curves indicated 

that the GI of FVC, FEV1, FEV1/FVC, MEF25-75, T75, 

and FIVC discriminated between PRISm and Normal 

patients. In the Normal group, EIT can exhibit partially 

similar pulmonary function characteristics as observed in 

the PRISm group. Furthermore, subgroup analysis was 

conducted using a cutoff score of 25 on the SGRQ, 

revealing differences in regional lung function. 

4 Conclusion 

Through EIT-based pulmonary function assessment, we 

can sensitively identify spatial and temporal heterogeneity 

in regional lung function among patients with normal one-

second rates. 
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Table 1: p-value of EIT parameters 

 

 GI-FEV1 GI-FVC GI- FEV1/FVC abnormal area GI-MEF25-75 GI-T75 Averaged time required GI-FIVC 

 

Time constant median Time constant iqr 

Normal vs PRISm .005 .004 .003 .003 .011 .000 .269 .002 .125 .015 

SGOQ<25 vs ≥25 .472 .791 .001 .004 .643 .006 .034 .666 .039 .009 
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Abstract: In this study, we report on the clinical applica-
tion of 3D EIT for imaging a patient with severe pneumonia.
Compared to CT images, the results demonstrate the effec-
tiveness of 3D EIT in visualizing the status of lung ventila-
tion.

1 Introduction
Due to its low cost, absence of radiation risk and high tem-
poral resolution, EIT serves as a powerful tool for moni-
toring lung function and evaluating patients with respira-
tory diseases, such as chronic obstructive pulmonary dis-
ease (COPD) [1] and acute respiratory distress syndrome
(ARDS) [2]. However, in clinical practice, EIT is predom-
inantly confined to 2D imaging. To obtain more compre-
hensive ventilation information about the patient, 3D EIT
presents itself as a promising approach. Therefore, we re-
cruited a patient with severe pneumonia to explore the fea-
sibility of 3D EIT in capturing patients’ ventilation features.

a

b

c d

Figure 1: a 3D EIT belt setup on the patient. b Chest X-ray im-
age. c Selected CT slices of the pulmonary window. d Selected
CT slices of the mediastinum window.

2 Method
We first provide brief information about the patient and then
describe the EIT imaging setup. The patient is male and 69
years old. He has had a recurrent cough with sputum for
the past two months. Six days before admission, he ex-
perienced worsening dyspnea with increased sputum pro-
duction and decreased oxygen saturation. Examination at
the outpatient department diagnosed as severe pneumonia.
With the oxygen saturation dropped to 90%, and the blood
pressure dropped, he was hospitalized at Peking University
Shenzhen Hospital. An emergency lung CT scan showed he
suffered from multiple infiltrates, consolidation, and pleural
effusion in both lungs, especially in the middle and upper
lobes of the right lung. For the 3D EIT imaging setup, we
employed two EIT belts: the first one is worn under the
armpit, and the second one is worn under the nipple. The
3D EIT setup and the results of the CT examination are il-

lustrated in Fig. 1.

3 Results
Fig. 2 shows the 3D EIT image reconstruction results. We
illustrate the 3D images from both the front and back views
(Fig. 2 a and b). The selected 2D images (Fig. 2 d) rep-
resent the caudal-cranial perspective, following a protocol
consistent with the CT images. In Fig. 2 c, we map the
middle coronal slice of the 3D image to the X-ray image.
Suppose the tidal variation (TV) of the region of the right
lung that is not ventilating is 1, the TV of the ventilation
region is 2.67. The results indicate ventilation in the left
lung of the patient while ventilation in the right lung is ob-
structed. The findings from the EIT images are consistent
with those from the CT examinations.

Front View Back View

L L
R

R

a b c

0

0.05
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y slice 15

d
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TV=2.67

Figure 2: a and b are reconstructed 3D EIT images of the front
view and back view. The ’L’ indicates the left lung and ’R’ in-
dicates the right lung. In c, the white curve defines the boundary
between the ventilated region and the non-ventilated region. TV
means the tidal variation. Images in d are selected 2D caudal-
cranial slices. a, b, and d share the same colormap.

4 Conclusions
We utilized 3D EIT for imaging the patient with severely
impaired alveolar ventilation. The findings align with those
of CT scans. Future work will involve systematically inves-
tigating the clinical applications of 3D EIT and optimizing
the 3D image reconstruction algorithm.
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Abstract: Accurate detection of patient-ventilator 

asynchrony (PVA) during mechanical ventilation relies on 

invasive monitoring of esophageal pressure or electrical 

activity of the diaphragm. Electrical impedance 

tomography (EIT) offers a promising opportunity to 

recognize PVA in a non-invasive manner. We proposed an 

index regional intensity fraction from EIT recordings to 

detect ineffective inspiratory effort during expiration 

(IEE), a typical type of PVA. The index obtains an area 

under characteristic curve of 0.94 on a cohort of 26 

patients, showing promising potential for non-invasive 

PVA monitoring. 

1 Introduction 

Patient-ventilator asynchrony (PVA) is common in 

mechanically ventilated patients, causing increased 

respiratory workload, discomfort, and self-inflicted lung 

injury [1]. Esophageal pressure (Pes) is the invasive gold 

standard for detecting PVA. While a non-invasive method 

is needed, electrical impedance tomography (EIT) offers a 

non-invasive solution. This study developed an EIT-based 

algorithm to detect ineffective inspiratory effort during 

expiration (IEE), a common PVA type. 

2 Methods 

Twenty-six patients accepting invasive or non-invasive 

mechanical ventilation are involved. Patients are 

ventilated using SV800 or SV70 ventilator (Mindray, 

Shenzhen, C.N.) and monitored by PulmoVista 500 EIT 

device (Draeger, Luebeck, D.E.). Data are stored in the 

devices for off-line post analysis. The study is approved 

by the ethics committee of Sir Run Run Shaw Hospital, 

School of Medicine, Zhejiang University (2022 Research 

No.0375). 

Ventilation waveforms (including the Paw, Flow, 

Volume and Pes) were loaded into a self-developed 

software for annotation. A junior respiratory therapist 

carried out the annotation, and a senior RT examined and 

corrected the result. IEE is marked when a negative 

deflection occurs in the Pes waveform during expiration or 

implicit IEE when no feature-specific variation in the 

ventilator waveform, but the Pes waveform has. 

We developed an automated synchronization 

algorithm for aligning ventilation data with EIT across 

distinct devices. It first used piecewise linear 

representation to extract global features from the EIT 

impedance curve I(t) and ventilation volume waveform 

V(t). Then, a sliding window found the sequence with the 

minimum Euclidean distance between I(t) and V(t). Post 

initial synchronization, we refined the alignment by 

averaging time diffs within a moving window. We 

detected peak values from the refined volume waveform 

V(t) and computed phase differences. Finally, we 

performed outlier detection on the phase differences and 

computed the mean to obtain the final result. 

Regional intensity fraction (RIF) was designed to 

capture the imbalanced ventilation distribution between 

the ventral and dorsal lung regions when IEE events [2]. 

The formulas for calculating RIF and ΔRIF are given 

below: 
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Firstly, the first-order difference result 𝐼𝑉
′ (𝑡) and 𝐼𝐷

′ (𝑡) 

of 𝐼𝑉(𝑡) and 𝐼𝐷(𝑡) is normalized to 0.1to 1 using min-max 

normalization to get 𝑁𝑜𝑟𝑚 ·  𝐼𝑉
′ (𝑡)  and 𝑁𝑜𝑟𝑚 ·  𝐼𝐷

′ (𝑡) . 

Then, the RIF index changing with time can be obtained 

by using equation 1, where 𝐼𝑉(𝑡)  represents ventral 

impedance and 𝐼𝐷(𝑡) represents dorsal. From equation 2, 

∆𝑅𝐼𝐹 is defined as maximum change in RIF index during 

expiration. 

3 Results and Conclusions 

421 explicit and 8 implicit IEE were annotated from 

11401 breaths. The optimal single-factor threshold for 

ΔRIF to discern IEE was determined as 0.5, yielding an 

area under the curve (AUC) of 0.94, demonstrating 

effective discriminatory accuracy. Eight implicit IEE 

breaths were all detected successfully. Typical IEE and 

non-IEE breaths are shown in Figure 1. 

 
Figure 1: Illustration of IEE recognition based on ∆RIF, (a) IEE, 

(b) non-IEE 

This study introduces a novel approach leveraging 

electrical impedance tomography (EIT) signals to identify 

IEE, highlighting the promising potential of EIT as a non-

invasive tool for PVA monitoring. 
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Abstract: Regional lung function using EIT offers real-

time functional insights not possible with traditional 

methods. Emerging from global research, this specification 

consolidates our centres’ expertise, existing research, and 

expert consultations. Aimed at enhancing EIT's efficacy in 

detecting lung function, standardizing its application, and 

refining result interpretations.  

1 Introduction 

EIT has been widely utilized in the diagnosis and treatment 

of critically ill patients, such as PEEP titration, assessment 

of pendelluft, guiding weaning, and identifying 

pneumothorax [1]. In addition, there is growing interest in 

regional lung function assessment based on EIT. The 

impedance changes measured by EIT are highly correlated 

with changes in lung volume, forming the foundation for 

assessing regional lung function (flow obstruction and 

volume restriction), which provides clinicians with regional 

ventilation information that other detection methods cannot 

reflect [2]. This technical specification is primarily based 

on the previous clinical practice of our research groups and 

relevant literature. It has been discussed and agreed upon 

by clinical experts and biomedical engineering specialists 

in this field, with the aim of promoting standardized and 

improved use of EIT in detecting regional lung function and 

facilitating unified result interpretations. 

2 Indications and Contraindications  

Major indications include: (1) Early screening for lung 

function abnormalities in the general healthy population or 

high-risk groups to assist in the early diagnosis of regional 

lung function impairment; (2) Bedside diagnosis and 

treatment evaluation for patients with obstructive, 

restrictive, or mixed ventilation dysfunction; (3) Guiding 

rehabilitation training for patients with lung function 

impairments. 

Relative contraindications: (1) Presence of pacemakers 

or implantable cardioverter defibrillators (depending on the 

operating frequency of the EIT device and the model of the 

implanted device); (2) Local skin infections or open 

wounds in the chest electrode binding area for EIT 

monitoring (electrodes cannot adhere to the skin); (3) 

Pregnancy (the current is within a safe range theoretically 

posing no risk to the fetus, but lacking clinical research 

evidence); (4) Subjects with neuromuscular diseases such 

as myasthenia gravis or muscular dystrophy (electrode 

binding may restrict their breathing). 

3 EIT measurement and data analysis  

EIT measurement procedure is documented in detail in the 

previous consensus [3]. EIT is conducted simultaneously 

with forced vital capacity manoeuvre, which is specified in 

a technical statement [4]. 

Following data reconstruction, a typical single EIT 

image consists of 32×32 pixels. The main components of 

data analysis are as follows: 

A: Lung ventilation time - global impedance curve quality 

assessment.  

Poor electrode contact tends to occur during forceful 

expiration. Any significant discontinuities, bends, or 

fluctuations in the curve during this phase indicate 

interference and should be identified and eliminated. 

B: Construction of regional lung function images (based on 

traditional lung function metrics).  

From pixel-wise impedance-time curves, parameters 

such as FEV1, FVC and the corresponding ratio can be 

derived. 

C: Construction of regional lung function images (temporal 

images) 

Time series images characterize regional temporal 

distribution and variability based on different exhaled 

volumes during forceful vital capacity. These images 

accurately reflect time required for specific exhalation 

volumes, representing respiratory muscle explosiveness, 

endurance, and lung function integrity. Two types of 

indicators are often calculated: time constants and gas 

distribution time for varying exhaled volumes. They offer 

insights into regional flow limitations and lung damage 

presence. 

4 Perspectives  

EIT can quickly provide visual information on lung 

ventilation and airflow distribution bedside. It features 

characteristics assisting in early screening of lung function 

in the general population or high-risk groups to detect 

regional lung function damage early. Bedside assessment of 

patients with impaired lung function, as well as guiding the 

rehabilitation training of patients with impaired lung 

function, are important applications of significant value. 

The clinical application of regional lung function using 

EIT is still in its early stages. Relevant thresholds and 

diagnostic criteria in different specific diseases need further 

validation through large-scale clinical studies. In clinical 

practice, the application of EIT should be combined with 

other indicators and methods for mutual confirmation. 
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